Multiple-Choice Questions

- 1. Assuming convergence, find $x = \sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}}$
 - (a) $\frac{1}{2}(\sqrt{5}+1)$ (b) $\frac{1}{2}(\sqrt{13}-1)$ (c) $\frac{1}{2}(\sqrt{5}-1)$ (d) $\frac{1}{2}(\sqrt{13}+1)$ (e) $\frac{1}{2}(\sqrt{13}-\sqrt{5})$
- 2. Calculate $\lim_{x \to 0} \frac{\ln(1-3x) \sin x}{1 \cos^2 x}$ (a) $-\frac{1}{2}$ (b) $-\infty$ (c) 0 (d) DNE
 - (e) ∞

3. Find F'(x) for $F(x) = \int_{1}^{3x^{2}} \sqrt{4 + t^{3}} dt$. (a) $\sqrt{4 + 27x^{6}}$ (b) $6x\sqrt{4 + x^{3}}$ (c) $6x\sqrt{4 + 27x^{6}}$ (d) $\frac{2}{3}(4 + 27x^{6})^{\frac{3}{2}}$ (e) $12x + 18\sqrt{3}x^{4}$

- 4. An oil rig is 16 miles from shore and 20 miles down-shore from a refinery. Land-based pipe costs \$60,000 per mile and underwater pipe costs \$100,000 per mile. Determine how the pipe should be laid to minimize the cost and calculate the minimum cost.
 - (a) \$2,800,000
 - (b) \$2,561,249.69
 - (c) \$1,536,749.82
 - (d) \$2,486,796.23
 - (e) \$2,480,000
- 5. Express the volume of the wedge in the first octant that is cut from the cylinder $y^2 + z^2 = 1$ by the planes y = x and x = 1 as a triple integral.

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{y}^{1} dx dz dy$$

(b) $\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{y}^{1} dx dz dy$
(c) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{y}^{1} dx dz dy$
(d) $\int_{0}^{1} \int_{x}^{1} \int_{0}^{\sqrt{1-y^{2}}} dz dy dx$
(e) $\int_{-1}^{1} \int_{x}^{1} \int_{0}^{\sqrt{1-y^{2}}} dz dy dx$

6. Find the values of a, b, c which would make the function f below differentiable on (-1,1), given that f(1) = f(-1):

$$f(x) = \begin{cases} x^2 + ax + b, & -1 \le x < 0\\ cx^2 + 4x + 1, & 0 \le x \le 1 \end{cases}$$

(a) a = 4, b = 1, c = -9(b) a = 4, b = 4, c = 4(c) a = 4, b = 1, c = -7(d) a = -4, b = 1, c = 1(e) a = 4, b = -1, c = 1 7. Find the volume bounded by the paraboloid $z = 10 - 2x^2 - 2y^2$ and the plane z = 2.

- (a) 8π
- (b) 8
- (c) 16π
- (d) 0
- (e) 4π

8. Evaluate the definite integral
$$\int_0^a \frac{x^2 + b^2}{x^2 + a^2} dx$$
.

(a)
$$\frac{(4-\pi)a + \pi b^2}{4a}$$

(b)
$$4a^2 + \pi (b^2 - a^2)$$

(c)
$$\frac{(2-\pi)a + \pi b^2}{2a}$$

(d)
$$a + (b^2 - a^2) \ln 2$$

(e)
$$\frac{(4-\pi)a^2 + \pi b^2}{4a}$$

- 9. Let $g(x) = e^{-2x} f(3x)$, where f is a differentiable function, f(0) = 4 and f'(0) = 5. Find the value of g'(0)
 - (a) 7
 - (b) -30
 - (c) 9
 - (d) 5
 - (e) -10

10. Determine m > 0 so that the tangent line to the graph of

$$f(x) = \tan^{-1}\left(\frac{x}{m}\right) + \ln(x^2 + m^2)$$

at x = 1 is parallel to the line x - 2y + 3 = 0.

- (a) $\frac{1}{2}$
- (b) 3
- (c) 1
- (d) -1
- (e) No such m exists.

11. Which of the following series are convergent?

I.
$$12 - 8 + \frac{16}{3} - \frac{32}{9} + \cdots$$

II. $5 + \frac{5\sqrt{2}}{2} + \frac{5\sqrt{3}}{3} + \frac{5}{2} + \frac{5\sqrt{5}}{5} + \cdots$
III. $8 + 20 + 50 + 125 + \cdots$

- (a) I only
- (b) II only
- (c) III only
- (d) I and II
- (e) II and III

12. The integral
$$\int_{-24}^{4} \frac{dx}{\sqrt[3]{(x-3)^2}}$$

- (a) converges to 4.
- (b) converges to 12.
- (c) converges to 9.
- (d) diverges to $+\infty$.
- (e) diverges to $-\infty$.

- 13. The radius of a right circular cone is increasing at a rate of 1.5 in/s and its height is decreasing at a rate of 3 in/s. Find the rate of change of the volume of the cone when the radius is 100 inches and the height is 150 inches. (*The volume of a cone is* $V = \frac{1}{3}\pi r^2 h$.)
 - (a) $10000\pi \,\mathrm{in}^3$
 - (b) $5000\pi \, \text{in}^3$
 - (c) $15000\pi \,\mathrm{in}^3$
 - (d) $\frac{40000}{3}\pi \,\mathrm{in}^3$
 - (e) $22500\pi \,\mathrm{in}^3$
- 14. Find the local maximum and minimum values and saddle points of the function $f(x, y) = x^2 + y^2 + x^2y + 4$.
 - (a) (0,0), $(\sqrt{2},-1)$ and $(-\sqrt{2},-1)$ are saddle points.
 - (b) f(0,0) = 4 is a maximum value, and $f(\pm\sqrt{2},-1) = 5$ is a maximum value.
 - (c) This function has no local extreme values
 - (d) f(0,0) = 4 is a minimum value, and the points $(\pm\sqrt{2},-1)$ are saddle points.
 - (e) (0,0) is a saddle point, and $f(\pm\sqrt{2},-1) = 5$ is a minimum value.
- 15. Find the general term of the Maclaurin series for xe^{-x^2} .

(a)
$$\frac{(-1)^{n}x^{2n}}{(n+1)!}$$

(b)
$$\frac{(-1)^{n}x^{2n+1}}{(n+1)!}$$

(c)
$$\frac{(-1)^{n}x^{2n+1}}{n!}$$

(d)
$$\frac{(-1)^{n+1}x^{2n+1}}{n!}$$

(e)
$$\frac{(-1)^{n+1}x^{2n}}{n!}$$

Short Answer Questions

1. Find the volume of the solid of revolution obtained by revolving the region bounded by the graphs of $x = y^2$ and $x = 1 - y^2$ about the line x = -3. Give an exact answer.

2. Find the interval of convergence of
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{(n+3)5^n}.$$

3. Calculate
$$\lim_{h \to 0} \frac{\sqrt{x^2 + 2xh + h^2 - 5x - 5h} - \sqrt{x^2 - 5x}}{h}$$

- 4. Find the length of the curve $x(t) = e^t \cos t$, $y(t) = e^t \sin t$ for $0 \le t \le \pi$. Give an exact answer.
- 5. The temperature at each point (x, y, z) in a room is given by $T(x, y, z) = 4x^2 - 3y^2 + 5xyz$. A fly is hovering at the point (1, 2, 4). In the direction of which vector should the fly move in order to cool off as quickly as possible?
- 6. Find a polynomial function f of minimum degree such that f has a maximum of 6 at x = 1 and a minimum of 2 at x = 3.
- 7. An elastic square is inscribed in a circle whose area is expanding at a rate of 16π square-inches per second. What is the rate of change of area for the inscribed square?
- 8. Evaluate the vector line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (2xz + \sin y)\mathbf{i} + x\cos y\mathbf{j} + x^2\mathbf{k}$ and C is the curve parametrized by $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$ for $0 \le t \le 2\pi$.

9. Calculate
$$\int_{1/e}^{e} \frac{\sqrt[3]{1+\ln x}}{x} dx.$$

10. Find the plane tangent to the surface $x^2 + 2y^2 + 3zx = 10$ at the point $(1, 2, \frac{1}{3})$.