2006 ACCA Calculus Exam

Part 1: Multiple Choice

#1 If g is a differentiable function and f(x) = g(g(x)), then f''(x) =

- (A) $2g''(x) \cdot g(x) + 2[g'(x)]^2$
- (C) $g''(g'(x)) \cdot g'(x)$
- (E) $g'(g'(x)) \cdot g''(x) + [g'(x)]^2$
- (B) $g''(g(x)) \cdot [g'(x)]^2 + g'(g(x)) \cdot g''(x)$ (D) $2[g'(x)]^2 + 2g''(g(x))$

#2 Let f(x) be a differentiable function whose domain is the set of all real numbers. Suppose that f(0) = -3 and f(10) = 7. Which of the following statements are true?

- I. There is a number c in the interval (0,10) such that f(c) = 0.
- II. There is a number c in the interval [0,10] such that $f(c) \ge f(a)$ for every number a in the interval [0,10].
- III. There is a number c in the interval (0,10) such that f'(c) = 1.
- (A) I and II only.(B) I and III only.(C) II and III only.(D) I, II, and III.(E) None of the above.

#3 Find the value of
$$\lim_{x \to \infty} \frac{1}{\sqrt{x+1} - \sqrt{x}}$$
.
(A) 1 (B) $\frac{1}{2}$ (C) 2 (D) ∞ (E) None of the above.

#4The asymptote of the function
$$y = x(1+\frac{1}{x})^x$$
 (defined on $x > 0$) is(A) $x = 0$ (B) $y = 0$ (C) $y = ex - \frac{e}{2}$ (D) $y = \frac{e}{2}x + 1$ (E) None of the above.

#5 The product of the *x*-coordinates of the points on the curve $x^4 + y^2 - 4x^2y + 27 = 0$ where the tangent line is vertical is

(A) -3 (B) 36 (C) 2 (D) -8 (E) None of the above.

#6 Rounded to the nearest degree, what is the angle between the tangent vector to $f(t) = \langle 2t, \sin t, e^t \rangle$ at t = 0 and the positive z axis?

(A) 53° (B) 87° (C) 95° (D) 66° (E) None of the above.

#7
$$\lim_{n \to \infty} \frac{\sqrt[n]{e} + \sqrt[n]{e^2} + \dots + \sqrt[n]{e^{n-1}} + e}{n} =$$

(A) $e - 1$ (B) 0 (C) e (D) 1 (E) None of the above.

#8
$$\lim_{n \to \infty} \frac{e^n}{n!} =$$
(A) 0 (B) 1 (C) e (D) ∞ (E) None of the above.

#9 If A_1 is the area within the limaçon $r = 5 + 3\cos\theta$ and A_2 is the area within the limaçon $r = 20 + 12\cos\theta$, then the ratio A_2/A_1 equals

(A) 2 (B) 4 (C) 8 (D) 16 (E) None of the above.

#10 Problem:
$$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/x^2} =$$

(A) 0 (B) 1 (C) e (D) ∞ (E) None of the above.

#11 For what set of values of x does
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 converge conditionally?
(A) [-1, 0) (B) -1 only (C) -1 and 1 only
(D) [-1, 1) (E) None of the above.

#12 If
$$p(x) = ax^3 + bx^2 + cx + d$$
, then $\int_0^\infty p(x)e^{-x}dx =$
(A) 0 (B) $a - b + c - d$ (C) $\frac{1}{4}a + \frac{1}{3}b + \frac{1}{2}c + d$
(D) $d + c + 2b + 6a$ (E) None of the above.

#13 What is the length of the plane curve defined by $x(t) = t^2 + 1$ and $y(t) = t^3 - 2$, for $0 \le t \le 2$?

(A)
$$\frac{14}{3}$$
 (B) $\frac{24}{5}$ (C) $\frac{8}{27}(10\sqrt{10}-1)$
(D) $\frac{4}{9}(10\sqrt{10}-1)$ (E) None of the above.

#14
$$\int_{0}^{1} \int_{w}^{1} \frac{1}{1+z^{2}} dz dw =$$

(A) $1-\ln 2$ (B) $\frac{1}{2} \ln 2$ (C) $\frac{\pi}{4}$
(D) $\frac{1}{2} + \ln 2$ (E) None of the above.

#15 Let *S* be the closed region in the *xy*-plane whose boundary is the parallelogram with vertices (0,0), (2,0), (3,1), and (1,1). The volume of the solid which lies under the surface z = 2 + 4xy and over the region *S* is

(A) 8 (B)
$$\frac{28}{3}$$
 (C) $\frac{32}{3}$ (D) $\frac{73}{6}$ (E) None of the above.

Part 2: Free Response

#16 If
$$f(\frac{y}{x}) = \frac{\sqrt{x^2 + y^2}}{x}$$
 (x > 0), find $f(x)$.

#17 Find the sum of the reciprocals of all the positive integers divisible by only powers of 2 and 5. In other words, compute $\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{5} + \frac{1}{8} + \frac{1}{10} + \dots$

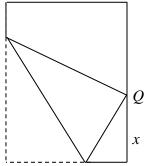
#18 Find the volume of the solid obtained by revolving around the *x* axis the region $R = \{(x, y) \mid -1 \le x \le 1, 0 \le y \le e^x + e^{-x}\}.$

#19 Let $u = x^{y/z}$. Find the gradient of u at the point $(e^2, 5, -1)$.

#20 Consider the graph of $y = x^3$. Suppose we start at the point (a, a^3) , a > 0, and find the equation of the tangent line to the graph at this point. This line will intersect the graph of $y = x^3$ at a second point – call it (a_1, a_1^3) . If we find the tangent line at this point, it again intersects the curve at another point (a_2, a_2^3) . If we iterate this process, find the sum of the infinite series $\sum_{i=1}^{\infty} \frac{1}{a_i^2}$.

#21 Find the exact value of *c* so that the area of the region bounded by $y = \cos x$ and the *x*-axis for $0 \le x \le c$ is exactly π .

#22 A rectangular piece of $8.5'' \times 11''$ paper (aligned with 8.5'' at the bottom) is folded so that the lower left hand corner is at point *Q* along the right hand edge. If point *Q* is *x* inches above the lower right hand corner, find the value of *x* which minimizes the length of the crease.



#23 Let *k* be a positive real number. Find the maximum area of a triangle in Quadrant I which can be formed by the coordinate axes and a tangent line to the curve $y = \frac{k}{x}$. Express your answer in terms of *k*.

#24 Find the volume of the solid bounded by the surface $z = 4 - y^2$, the plane z = 4 - x, and the *xy*-plane.

#25 For each real number *a*, define $f_a(x)$ to be equal to the smaller of the two values $(x-a)^2$ and $(x-a-2)^2$. Let $F(a) = \int_0^1 f_a(x) dx$. Find the maximum value of F(a) with $-2 \le a \le 2$.