2014 ACCA Calculus Competition Multiple Choice Questions

- 1). Suppose h(x) = f(g(x)) and g(3) = 6, g'(3) = 4, f'(3) = 2, f'(6) = 7. Find the value of h'(3).
 - a. 4
 - b. 8
 - c. 16
 - d. 28
 - e. 24
- 2). Let $f(x) = \int_{3x}^{2} \frac{\sin(t)}{t^2}$, where t > 0. Find f'(x).
 - a. $\frac{\sin(3x)}{3x^2}$
 - b. $-\frac{\sin(3x)}{3x^2}$
 - C. $\frac{\cos(x)}{x^2}$
 - $d. -\frac{\sin(3x)}{9x^2}$
 - e. $-\frac{\cos(3x)}{9x^2}$
- 3). If $f_1 = 2$ and $f_{n+1} = f_n + \frac{1}{2}$ for all integers n > 1, then what is f_{101} .
 - a. 49
 - b. 50
 - c. 51
 - d. 52
 - e. 53
- 4). $\int_0^1 \int_0^{\sin(y)} \frac{1}{\sqrt{1-x^2}} \ dx \ dy =$
 - a. $\frac{1}{3}$
 - b. $\frac{1}{2}$
 - c. $\frac{\pi}{4}$
 - d. 1
 - e. $\frac{\pi}{3}$

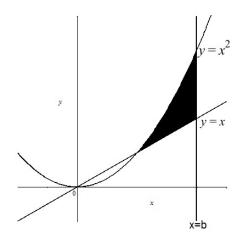
5). A lighthouse is on a small island 3 km away from the nearest point P on a straight shoreline, and its light makes 4 revolutions per minute. At what rate is the beam of light moving along the shoreline when it is 1 km away from P.

- a. 20π km/min
- b. $\frac{70\pi}{3}$ km/min
- c. $\frac{80\pi}{3}$ km/ min
- d. $\frac{100\pi}{3}$ km/min
- e. $\frac{110\pi}{3}$ km/min

6). The function $f(x,y) = xy - x^3 - y^3$ has a relative maximum at the point

- a. (0,0)
- b. (1,1)
- c. (-1, -1)
- d. (1,3)
- e. $(\frac{1}{3}, \frac{1}{3})$

7). If b > 0 and if $\int_0^b x \, dx = \int_0^b x^2 \, dx$, then the area of the shaded region in the figure below is



- a. $\frac{1}{12}$
- b. $\frac{1}{6}$
- c. $\frac{1}{4}$
- d. $\frac{1}{3}$
- e. $\frac{1}{2}$

- 8). Find the length of the curve $x = 2t^2 1$ and $y = -4t^2 + 3$ for $0 \le t \le 1$.
 - a. $4\sqrt{5}$
 - b. $8\sqrt{5}$
 - c. $8\sqrt{3}$
 - d. $2\sqrt{3}$
 - e. $2\sqrt{5}$
- 9). $\int_0^1 \frac{x}{1+x^2} \ dx =$
 - a. 1
 - b. $\frac{\pi}{4}$
 - c. $tan^{-1}(\frac{\sqrt{2}}{2})$
 - d. ln|2|
 - e. $ln|\sqrt{2}|$
- 10). In the xy-plane, if C is the circle $x^2 + y^2 = 9$, oriented counterclockwise, then
- $\oint_C -2x \ dx + x^2 \ dy =$
 - a. 0
 - b. 6π
 - c. 9π
 - d. 12π
 - e. 18π
- 11). What is the area of the region bounded by the coordinate axes and the line tangent to the graph of $y = \frac{1}{8}x^2 + \frac{1}{2}x + 1$ at the point (0,1)?
 - a. $\frac{1}{16}$
 - b. $\frac{1}{8}$
 - c. $\frac{1}{4}$
 - d. 1
 - e. 2

- 12). Which of the following statements are true for every function f, defined on the set of real numbers, such that $\lim_{x\to 0} \frac{f(x)}{x}$ is a real number L and f(0)=0?
 - I. f is differentiable at 0
 - II. L=0
 - III. $\lim_{x \to 0} f(x) = 0$
 - a. None
 - b. I only
 - c. III only
 - d. I and III only
 - e. I, II, and III
- 13). All function f defined on the xy-plane such that $\frac{\partial f}{\partial x} = 2x + y$ and $\frac{\partial f}{\partial y} = x + 2y$ are given by f(x,y) =
 - a. $x^2 + xy + y^2 + C$
 - b. $x^2 xy + y^2 + C$
 - c. $x^2 xy y^2 + C$
 - d. $x^2 + 2xy + y^2 + C$
 - e. $x^2 2xy + y^2 + C$
- 14). $\sum_{n=1}^{\infty} \frac{n}{n+1} =$
 - a. $\frac{1}{e}$
 - b. ln(2)
 - c. 1
 - d. e
 - e. $+\infty$
- 15). Find an equation for the plane consisting of all points that are equidistant from the two points (1,1,0) and (0,1,1)
 - a. x z = 0
 - b. x z = 1
 - c. x y = 0
 - d. x y = 1
 - e. x + z = 0

Short Answers

- 16). Find the point where the tangent to the curve $y = x\sqrt{3-x}$ has zero slope.
- 17). Evaluate the integral $\int ln(1+x^2) dx$.
- 18). Given that $f(x) = x^3 + ax^2 + bx$ has critical numbers at x = 1 and x = 3, find a and b.
- 19). Let f be the function defined by f(x,y) = 5x 4y on the region in the xy-plane satisfying the inequalities $x \le 2, y \ge 0, x + y \ge 1$ and $y x \le 0$. Find the maximum value of f on this region.
- 20). In xyz-space, give an equation of the plane tangent to the surface $z=e^{-x}sin(y)$ at the point where x=0 and $y=\frac{\pi}{2}$.
- 21). Consider the following two player game. Two players take turns tossing a fair die, i,e a 6 sided dice where each side has an equal probability of landing up. The first player to get a 5 wins the game. What is the probability that the player who starts first wins the game?
- 22). Determine the interval of convergence for the Taylor Series centered at zero (i.e the Maclaurin series) for f(x) = ln(1-x).
- 23). Calculate $\lim_{x\to\pi} \frac{e^{-\pi} e^{-x}}{\sin(x)}$.
- 24). In how many of the eight standard octants of xyz-space does the graph of $z=e^{x+y}$ appear?
- 25). Let $f(x) = \int_1^x \frac{1}{1+t^2} dt$ for all real x. Give the equation of the line tangent to the graph of f at the point (2, f(2)).