Before beginning the exam, make sure every team member has read and understood all of the instructions provided on the Student Instruction Sheet.

PART ONE: MULTIPLE CHOICE QUESTIONS

1. Find the constants *a* and *b* such that the function $f(x) = \begin{cases} 2 & x \le -1 \\ ax+b & -1 < x \le 3 \\ x^2-2x-5 & x \ge 3 \end{cases}$ is

continuous on the entire real line.

- a. a = -1 and b = 1
- b. a = 1 and b = -1
- c. a = 2 and b = -2
- d. a = -2 and b = 2
- e. none of the above
- 2. Which of the following series converges absolutely?

a.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{7\sqrt{n}}{n^2 + 1}$$

b.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{7\sqrt{n}}{n+1}$$

c.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{7n}{n^2 + 1}$$

- d. all of the above
- e. none of the above

3. Find
$$D_x \left(x + \frac{3}{x} \right)^x$$

a. $\left(\frac{x^2}{x^2 + 3} \right) \left(x + \frac{3}{x} \right)^x \left(1 - \frac{3}{x^2} \right)$
b. $\left(\frac{-3}{x^2 + 3} \right) \left(x + \frac{3}{x} \right)$
c. $\left[\frac{x^2 - 3}{x^2 + 3} + \ln \left(x + \frac{3}{x} \right) \right] \left(x + \frac{3}{x} \right)^x$
d. $\left[\frac{-3}{x^2 + 3} + \ln \left(x + \frac{3}{x} \right) \right] \left(x + \frac{3}{x} \right)^x$

e. none of the above

4. Evaluate
$$\int_{-\pi/4}^{\pi} \sec^2 x dx$$

a. $\sqrt{2}$
b. 1

- c. -1
- d. 2
- e. none of the above

- 5. A parabolic satellite dish has a diameter of 5 feet and its depth at the center is 2 feet. Find the distance of its focus from the center.
 - a. 18/25
 - b. 10
 - c. 4/5
 - d. 25/32
 - e. 5/4

6. Find
$$F'(x)$$
, if $F(x) = \int_{\sqrt{x}}^{x^2} \sqrt{t^2 - 1} dt$
a. $2x\sqrt{x^2 - 1} - \frac{\sqrt{x^2 - 1}}{2\sqrt{x}}$
b. $\sqrt{x^2 - 1} - \sqrt{x - 1}$
c. $2x\sqrt{x^4 - 1} - \frac{\sqrt{x - 1}}{2\sqrt{x}}$
d. 0
e. none of the above

7. Let $y = \frac{-x^3 + 9x^2 - 17x - 3}{x - 3}$. What are the global extreme values of this function?

- a. no min; max is 10
- b. no max; min is 10
- c. no min; max is 3
- d. no max; min is 3
- e. there are no extreme values

8. Find
$$\frac{d^2 y}{dx^2}$$
 if $y = e^{xy}$
a. $y^2 e^{xy}$
b. $\frac{y^2}{1-xy}$
c. $(x+y)e^{xy}$
d. $\frac{3y^3 - 2xy^4}{(1-xy)^4}$

e. none of the above

- 9. Evaluate $D_x(\log_4(e^{\sec(8^x)}))$
 - a. $(8^x) \sec(8^x) \tan(8^x)$
 - b. $\frac{3}{2}(8^x) \sec(8^x) \tan(8^x)$
 - c. $2(8^x) \sec(8^x) \tan(8^x)$
 - d. $3(4^x) \sec(8^x) \tan(8^x)$
 - e. none of the above

10. You are standing at (1, 1, 3) on the surface $z = 3x^2 - 2xy + 2y^2$ If you move in the direction of greatest decrease in *z*, what will that rate of decrease be?

a.
$$\frac{-1}{2}$$

b.
$$\frac{-\sqrt{5}}{2}$$

c.
$$-2\sqrt{5}$$

d.
$$-\sqrt{6}$$

e.
$$-2$$

11. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{(-3)^n n}$

- a. [-1, -2]
- b. [-1, -2)
- c. (-1, -2]
- d. (-1, -2)
- e. none of the above

- 12. An object with weight *W* is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is $F = \frac{\mu W}{\mu \sin \theta + \cos \theta}$ where μ is a positive constant called the coefficient of friction and where $0 \le \theta \le \pi/2$. When is *F* minimized? Write your answer as a trigonometric function of θ .
 - a. $\mu = \sin \theta$
 - b. $\mu = \cos \theta$
 - c. $\mu = \tan \theta$
 - d. $\mu = \cot \theta$
 - e. none of the above
- 13. Set up the definite integral (do not evaluate) used to find the first quadrant length of the graph given by the equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$

a.
$$\int_{0}^{3} \frac{1}{3} \sqrt{\frac{81+7x^{2}}{9-x^{2}}} dx$$

b.
$$\int_{0}^{3} \frac{1}{9} \sqrt{\frac{81+7x^{2}}{9-x^{2}}} dx$$

c.
$$\int_{0}^{3} \frac{1}{3} \sqrt{\frac{81-5x^{2}}{9-x^{2}}} dx$$

d.
$$\int_{0}^{2} \frac{1}{3} \sqrt{\frac{81-5x^{2}}{9-x^{2}}} dx$$

e. none of the above

- 14. Find the area of the triangle with vertices (3, 4, 1), (0, 2, 3), and (2, 2, -1).
 - a. 100
 - b. $78\sqrt{2}$
 - c. 6
 - d. $39\sqrt{2}$
 - e. $\frac{3}{2}\sqrt{17}$

- 15. Find the lowest temperature on the plane x + y + 2z = 1 if temperature *T* is given by the formula $T = x^2 + y^2 + z^2$.
 - a. 1/6
 - b. 1/8
 - c. 1
 - d. ¼
 - e. ½

PART TWO: SHORT ANSWER QUESTIONS

- 16. Find the shortest distance between the point (2, 1, 3) and the surface 4X 3Y + 1Z = 7.
- 17. Compute the Riemann sum of *f* on the interval [0, 4], for n = 4, using the midpoint of each subinterval as the evaluation points, given f'(x) = 2x and f(0) = 1.
- 18. What is the area bounded by the curves $f(x) = -(x-2)^2 + 4$ and $g(x) = x^2$?
- 19. What is the area of the region bounded by the polar equation $r = \csc\theta$ from $\pi/4$ to $\pi/2$?
- 20. Suppose that $f(x) = \begin{cases} \sqrt{4-x^2} & 0 \le x \le 2\\ -3 |x-3|+3 & 2 \le x \le 5 \end{cases}$ and $g(x) = \int_{0}^{x} f(t)dt$. Find f(3), g(3), and g'(3)
- 21. Find the volume inside $X^2 + Y^2 + Z^2 = 4$ and also inside the cylinder $X^2 + Y^2 = 1$.

22.	Find $\left(\frac{f \circ g}{2g}\right)$ (3) given	x	f(x)	g(x)	f'(x)	g'(x)
		3	-1	4	0	-1
		4	1	3	2	7

- 23. A pilot is flying along a path whose coordinates are given by the following: $X = t^3 3$, $Y = t^2 + 1$, Z = -t, t =time. At t = 1, the pilot fires a missile straight ahead, along a tangent line toward a stationary object whose X coordinate is 7. Find the distance between the pilot and the object at the time the missile was fired.
- 24. Evaluate $\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^n$
- 25. Evaluate $\int_C 2xydx + 2x^2dy$ along curve *C* (oriented counterclockwise) where *C* is the boundary of the region bounded by $y = x^2$ and y = x + 2