
The “WeakDH” Result and its 
Significance for Security and 
Privacy

Jason Perry

Lewis University CaMS

December 1, 2015



The work being presented in this talk

ACM CCS 2015 – Best Paper Award



Outline

1. Intro: Encryption on the Internet

2. The Diffie-Hellman Key Exchange Protocol

3. Breaking DH: The discrete logarithm problem

4. Result #1: the LOGJAM security degradation attack

5. Result #2: Possible break of 1024-bit DH with state-level resources

6. Conclusion



Encryption on the Internet

• Due to the way the Internet is architected, all traffic is subject to eavesdropping

• “Packet sniffing”

• Without strong encryption, the world of e-commerce and social media that we enjoy 
on the internet would not be possible. 

• Most prevalent uses of encryption: 

• A URL beginning with HTTPS indicates that the web browser and website are carrying out 
encrypted communications.

• Equally important to many organizations are VPNs (virtual private
networks), whose traffic is most commonly encrypted using the IPsec protocol. 

• Allows secure access to company networks from outside



Overview of Symmetric-key Encryption

• Can be thought of as an envelope with a lock (encryption algorithm) that 
can only be locked and opened by a key (string of random bits)

• When a pair of parties shares a key k, they can send messages to each other 
that only they can read.

• If the key is recovered by an adversary, all bets are off.

m c

k k

m



But how do they get the key?

• The two parties need some way of sharing an identical key known to no one else. 

• Meeting in person, or establishing a different channel for communicating, is not 
practical in many internet applications. 

• This problem remained unsolved until the advent of public-key cryptography. 

k k



The Diffie-Hellman Key Exchange 
Protocol (DH)

• The first published protocol in the field of public-key cryptography

• Still one of the most widely used algorithms on the internet (HTTPS, VPNs)

W. Diffie and M. E. Hellman, "New Directions in Cryptography," IEEE Trans. 
on Info. Theory, Vol. IT-22, Nov. 1976, pp. 644-654 (Invited Paper).

http://www-ee.stanford.edu/~hellman/publications/24.pdf


DH Basic Operation

1. Alice and Bob decide on two numbers: a generator g and a prime p (both can be 
known to the public)

2. Alice generates a secret number a, Bob generates a secret number b

3. Alice computes ga (mod p) and sends it to Bob. Bob computes gb (mod p) and 
sends it to Alice

4. Alice computes (gb)a = gab (mod p). Bob computes (ga)b = gab (mod p). Now gab is 
the shared secret key. 

(g,p)

a b

x = ga (mod p)

y = gb (mod p)

gab (mod p) gab (mod p)



What makes it secure? 

• An eavesdropper can see both x = ga and y = gb (mod p), but with these alone it is 
thought to be too difficult to compute gab. 

• We know nothing better than to take the logarithm of ga or gb to get a or b
logg ga = a (mod p)

• In the realm of modular arithmetic, this discrete logarithm problem (DLP) is thought 
to be computationally intractable—no efficient algorithm is known or believed to 
exist.  

• Therefore, the security of DH is built on the assumption that DLP is intractable*

*for at least some groups.



How intractable is DLP?

• The time required to compute discrete logarithms is related to the size of p, which is 
typically measured in bit length

• A source of expressions such as “1024-bit security”, “2048-bit security” 

• Best known algorithm for computing discrete logs: the number field sieve (NFS)
[Gordon ‘92], with time complexity:

• Estimated NFS runtimes, in core-years, for common sizes of p:

Size of p, in bits Core-years, total

512 10.2

768 36,500

1024 45,000,000



THE “LOGJAM” ATTACK
or, the chickens of 1990s crypto legislation come home to roost



Logjam attack: overview

• Allows a “man-in-the-middle” (MITM) to decrypt HTTPS traffic that uses DH. 

• Main idea: Many web servers continue to support weak DH using 512-bit primes. 
The attack tricks the client’s browser into accepting such a small prime. 



Export-grade cryptography

• In the early 1990’s, the US passed legislation prohibiting cryptography beyond 
certain strengths from being “exported”, i.e., used in internet communications with 
international servers. 

• Key-length restrictions were placed on many algorithms

• DH was restricted to a 512-bit p

• The weakened versions of the algorithms were called export-grade cryptography.

• The restrictions were eventually lifted, and browsers stopped supporting the 
weakened cryptography; However, many web servers still continued to support it for 
the sake of backward compatibility. 

• Authors found that 8.4% of the top 1 million domains still supported DHE_EXPORT for 
512-bit primes



The TLS Handshake

• To support encrypted communications, a client (browser) and server must first 
negotiate the cryptographic algorithms and key lengths to use. 

I support 
TLS 1.2.

I also 
support 
TLS 1.2.

I support 
2048-bit 

DH.

I only 
support 
1024-bit 

DH.

Okay, we’ll 
use 1024-

bit DH.

Here is our 
1024-bit 
prime…

Great, 
thanks! p



Normal Operation

• If the encryption the server supports is too weak encryption, the browser will refuse 
to connect. 

I support 
2048-bit 

DH.

I only 
support 

512-bit DH.

No way, 
too weak! 

<click>



Overview of the Logjam attack 
• Man-in-the-middle intercepts traffic in both directions and tricks browser into 

accepting a short prime

I support 
2048-bit 

DH.

Okay, 
here’s our 

512-bit 
prime…

Great, 
thanks!

“I need 
export-

grade DH.”

“Okay, 
here’s our 
2048-bit 
prime…”

p



Making Logjam work

This works because: 

• A flaw in the TLS handshake protocol: server does not sign the initial cryptographic 
parameters with its certificate—that’s why they can be substituted by MITM.

• Browsers didn’t check the length of the prime received

To complete the handshake and decrypt the traffic, the MITM still has to compute the 
discrete log of y = gb (mod p) very quickly

• Is this possible, even with 512-bit primes? 

Size of p, in bits Core-years, total

512 10.2

768 36,500

1024 45,000,000



Precomputing Discrete Logs

• Recall that the goal is to compute b from y = gb mod p

• The number field sieve algorithm has three major stages, the first two of which only 
depend on p, not g or y :

• If a server keeps reusing a prime on which the adversary has performed the 
precomputation, individual sessions can be broken very quickly by performing only 
the descent phase. 



Precomputing Discrete Logs

• Authors found that 92.5% of all domains that supported DHE_EXPORT used one of 
two 512-bit primes

• Results of 512-bit discrete log experiments: 

• Polynomial selection + sieving on 2000-3000 cores in parallel: 18 hours

• Linear algebra on 36-node Xeon cluster: 120 hours 

• Total precomputation time for 512-bit p: about one week

• Descent phase on single machine with 2 18-core Xeons: median time of 70 seconds

Length of p in bits Sieving, core-years Linear Algebra, 
core-years

Descent, core-time

512 2.5 7.7 10 mins

768 8,000 28,500 2 days

1024 10,000,000 35,000,000 30 days



Potential Impact of Logjam

• Authors implemented proof-of-concept attack

• Many ways an attacker can work around the delay 

• Could be used to decrypt traffic to 8% of top 1M websites



Mitigation of the Logjam vulnerability

• After the attack was published, browsers were updated to reject the short primes. 

• IE, Chrome, Firefox require minimum 1024 bits for DH; Safari: 768.

• Test your browser: weakdh.org

http://www.weakdh.org/


POSSIBLE BREAK OF 1024-BIT DH BY NATION-
STATES



Prime reuse for 1024-bit DH

1024-bit DH is still a standard choice for many browsers and web servers and VPNs.

• A single 1024-bit prime was found to be used for 26% of SSH servers and 66% of 
VPNs.

• A second 1024-bit prime was used for 18% of the top 1M HTTPS websites 
(Apache 2.2)



Why are servers reusing primes? 

• It’s easier and potentially less error-prone to stick with a known good prime.

• As long as it remains infeasible to break even one of them, there’s no intrinsic 
problem with reusing the same p, as long as the a and b are different every time.

….but that may no longer be the case. 



Conjecture

• Is it possible that a nation-state-level entity could have invested the time and money 
needed to do the full NFS precomputation stage for even one 1024-bit p?

• If so, they could to passively decrypt a significant fraction of all web and VPN 
traffic—no MITM necessary



Authors’ estimations

• For sieving, 80x speedup using dedicated chips (ASICs)

• $8M could buy enough chips to do the sieving phase for one 1024-bit p in one year

• Linear algebra phase a bigger unknown

• Estimated cost of $11B in supercomputers to do this step in 1 year 

• If ASICs could achieve a similar speedup for this phase, then we’re in the range of 
hundreds of millions of dollars—well within the range of a nation-state



Exhibit 1: NSA’s “Black budget”

• US intelligence budget for secret projects FY 2013: $52.6 billion

• NSA: $10.8 billion, Cryptanalysis and exploitation services: $1.0 billion

• Summary tables published in Washington Post



Exhibit 2: Statements by insiders 

James Bamford, Wired Magazine, 2012: 

According to another top official also involved with the program, the NSA made an 
enormous breakthrough several years ago in its ability to cryptanalyze, or break, 
unfathomably complex encryption systems employed by not only governments around the 
world but also many average computer users in the US. The upshot, according to this official: 
“Everybody’s a target; everybody with communication is a target.”

[ .. ]

The breakthrough was enormous, says the former official, and soon afterward the agency 
pulled the shade down tight on the project, even within the intelligence community and 
Congress. “Only the chairman and vice chairman and the two staff directors of each 
intelligence committee were told about it,” he says. The reason? “They were thinking that 
this computing breakthrough was going to give them the ability to crack current public 
encryption.”



Is the US government decrypting 66% of all VPN traffic and 18% of all HTTPS traffic? 



Mitigations

• Move to ECC (Elliptic Curve Cryptography)

• Still DH, but with a different representation of groups, not vulnerable to NFS

• If ECC isn’t possible, use at least 2048-bit primes

• If 2048-bit isn’t possible, generate a fresh 1024-bit prime



Conclusion

• Diffie-Hellman Key Exchange is not broken; but it is being used with sufficiently weak 
parameters that powerful parties may already be able to break it and decrypt 
internet traffic.

• Moral for developers: The most secure cryptographic algorithms don’t do any good if 
deployed carelessly or incorrectly!



THANK YOU! 


