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Abstract

Natural-language interfaces to policy-based frameworks for access control can facilitate deeper policy understanding and sup-
port the analysis and maintenance of policies. We have developed a translation module that maps sentences of Attempto Controlled
English to predicates of many-sorted first-order logic, which can be directly used as policy rules and conditions in a logic-based
policy framework. This translation achieves broader semantic coverage than previous work that uses ACE, by means of a novel
lambda-calculus-based mapping that applies modern principles of compositional semantics, and by a set of semantic assumptions
relevant to the use of natural language in describing access control policies. We also demonstrate a form of question answering that
is supported natively by this translation.

Our design also demonstrates a modular architecture for rapid development of natural language interfaces to new policy do-
mains, enabled by the automatic generation of domain lexicons from logical signatures. We initially developed the translation
module for a vocabulary in the cognitive radio domain, and subsequently generalized the system and applied it to additional do-

mains. The module and framework inter-operate with policies written in the XACML rule language.

1. Introduction

The specification and analysis of access control policies is
vital to the deployment of computer systems in virtually every
setting. The development of frameworks for formally specify-
ing and reasoning about policies is a fruitful research area that
promises to contribute to the usability, security, and stability
of many systems. Even where automated policy enforcement
systems are in use, access control policies are generally speci-
fied in natural language first. Ideally, policies should continue
to have a natural language representation in the system, in or-
der to aid human understanding and facilitate the analysis of
the policies. Natural language interfaces for policy frameworks
achieve these goals by allowing input and analysis of policy
components as natural language sentences within the system it-
self.

There is no “one-size-fits-all” solution for adding natural
language interfaces to software systems. Natural language pro-
cessing technologies are not yet (and may never be) advanced
enough to provide a fully automatic conversion of policy rules
to a formal representation that is guaranteed to be correct, for
rules expressed in unrestricted English. However, the domain of
access control policies is one in which current methods of com-
putational linguistics can significantly aid the process of policy
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development and analysis. An automated machine translation
of English policy rules into logic, even for a closed subset of
English, can provide vital feedback in the cycle of refining both
the natural-language and formal expressions of policies until
each of them precisely expresses the desired conditions, and it
can facilitate communication between policy advisors and tech-
nical policy analysts.

The work described in this paper presents a modular system
and methodology that allows natural language modules with
rigorously specified semantics to be quickly adapted to any pol-
icy domain. An example policy domain, which will provide us
with examples for the remainder of the paper, is that of univer-
sity policies for assigning and viewing grades. This domain is
taken from work on the Margrave policy engine [14], and will
be useful for drawing comparisons between our work and ex-
isting policy tools.

1.1. Policy Rules and Constraints

In this work we consider access control policies of the form
specified in [2]], in which policies are comprised of a rule base,
containing a list of the policy’s access rules in logical form, and
a constraint base, listing the relevant environmental constraints.
Policy requests are described in terms of an Action, that is, the
operation being requested, a Subject (the entity placing the re-
quest), and an Object, to which the action will be applied. Thus
the rules and environmental constraints are also described using
entities of these types. We are primarily concerned with trans-
lating a natural language sentence to the logical form of either
arule or a constraint from an access control policy.
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As a first example, say that a policy analyst drafts the fol-
lowing policy rule:

If the requester is a student and the action is an
assign and the grades are external then the request
is denied.

The purpose of this rule is to prevent students from assign-
ing externally visible grades. From this sentence, our transla-
tion module produces the following predicate, which is an one-
variable lambda abstraction of a first-order formula:

(lambda (r)

(if (and (isStudent (subject r))
(= (action r) assign)
(isExternal (object r)))

(deny r)))

Notice that we use equality to test whether the action is
equivalent to the first-order constant “assign”, while properties
of the subject and object are tested with predicates. This re-
flects a model of access control in which the requested action is
of one of a fixed predetermined set, while the subject and object
may have an arbitrary and expandable set of testable properties
that determine access rights.

In addition to rules, a policy may contain environmental
constraints. Unlike policy rules, these are not written as condi-
tionals but as simple declarative sentences that specify restric-
tions. One example of such a constraint is:

No action is a view and an assign.

This will be translated into the following expression:

(lambda (r)
(not (and (= (action r) view)
(= (action r) assign))))

The condition can be seen as asserting the disjointness of
the interpretation of the first-order constants “view” and “as-
sign”. The translation is an example of correct handling of
negation and coordination by our module.

1.2. System Architecture

The main operation of the translation module is to take an
English statement of a policy rule or external condition, and
translate it into a sentence of first-order logic. The major com-
ponents of the system are shown in Figure |I} The system rep-
resents a “classical” NLP pipeline. The preprocessor corrects
spelling errors and tokenizes the input for the parser. The parser
converts the sentence into a tree structure according to a set
of grammar rules. The semantic mapper associates nodes in
the tree with lambda calculus expressions that represent par-
tial meanings. The beta-reducer reduces the composite expres-
sion for one entire sentence, resulting in a formula of first-order
logic that represents the meaning of the policy rule or condition
and can be directly interpreted by the policy engine.

The lexical knowledge utilized by the system is comprised
of two components: a domain lexicon used by the syntactic
parser, which contains part-of-speech and morphological infor-
mation, and a semantic lexicon that associates word forms with
known logical predicates. This second lexicon fulfills the role

of a first-order logic signature, in specifying the vocabulary of
a first-order language. Both of these lexicons contain domain-
independent and domain-specific terms, which can be specified
independently.

The system is written in the Standard ML programming lan-
guage, except for the ACE Parser which is written in Prolog and
is called as an external program. Each of the components of the
system will be discussed in detail in subsequent sections.

1.3. Related Work and Contributions

This work builds on prior research in the use of natural lan-
guage interfaces for policy engines. A proposal for the architec-
ture of a natural language input processing tool as a part of an
interactive “policy workbench” is given in [20]. Besides identi-
fying the key component technologies of such a tool, this work
describes a prototype for generating draft policies from natural
language sentences. However, this prototype is based more on
knowledge extraction than precise sentence analysis.

One policy management tool that has work published on
natural-language rule entry is IBM’s SPARCLE [10]]. Like the
above work, this also uses shallow parsing primarily to identify
rule elements in natural language sentences.

More recently, one prominent policy language, Protune [§]],
has had a natural-language interface developed [[12]] and applied
to the domain of privacy policies in social platforms [13]. We
follow this work in using Attempto Controlled English (ACE)
[15] as our input language, with a custom vocabulary. The fea-
tures of ACE will be described in detail in section |3| The ap-
proach of [[12] is to take the logical output of ACE analysis tools
and map it to rules in the Protune policy language. This map-
ping has significant limitations that the present work addresses.

One source of limitations in translation from natural lan-
guage to policies is the formal representation of policy rules
used in the policy framework. Protune uses logic programming
as the basis for its rule format. Therefore, in translating from
English to policy rules, there is a natural restriction to sentences
that have a clear interpretation as Horn-clause forms. Specifi-
cally, the policy must have the form “If condition; and ... and
condition,, then action.” Indeed, in the work in [[12] only a sub-
set of ACE that has a direct correspondence to rules of this form
is translated.

Our work contributes significant advances to this state of the
art. In the Athena Policy Engine [2], both policy rules and en-
vironmental constraints are expressed in full many-sorted first-
order logic. First-order logic is a universal standard that is also
highly human-readable. Other significant advantages given by
FOL-based policy specification and reasoning are discussed in
[2]. For the purposes of natural language interfaces, translat-
ing directly into FOL allows us to have a more flexible and yet
principled interpretation of a larger subset of ACE. The only
constraint on the form of policy rules is that they must be im-
plications, while environmental constraints can be sentences of
any form. The first-order logic representation also allows for
treating negation more directly than in Prolog-style semantics.
In sum, more English sentences can be understood “as is” as
policy rules and constraints.
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Figure 1: The translation module architecture.

To exploit the flexibility offered by first-order logic, we em-
ploy more sophisticated machinery for the translation. Rather
than using the output of ACE semantic analysis tools (e.g., Dis-
course Representation Structures, SWRL), we develop a new
mapping directly from ACE syntax trees to sorted first-order
logic. Modern tools of computational semantics allow us to pro-
vide broader semantic coverage in a principled fashion. Specif-
ically, using continuation grammar (3|, we can declaratively
specify any quantifier scope relations, where the existing ACE
semantics only specifies one fixed scope interpretation for quan-
tified sentences — namely, that the scope of a quantifier begins
at its point of introduction and extends to the end of the co-
ordinated sentence. Using the same approach, we also handle
coordinated noun phrases, which is one example of a syntactic
structure not supported in the prior Protune-based work [12]. To
our knowledge, this is the first work to develop a new semantic
mapping directly from ACE syntax, as opposed to transform-
ing the output produced by ACE’s semantic tools to suit some
specific application.

As an additional contribution, we demonstrate how to make
such a translation component general, modular and easily adapt-
able to new domains. We show how natural-language transla-
tors for new policy domains can be generated semi-automatically
from the domain specifications used in the logical policy frame-
work.

2. Typed Logic for Policy Domains

The flexible policy framework described in [2} 3, 4] is built
on top of Athena [1]], a logical framework that serves both as
a functional programming language and as a theorem-proving
system, using many-sorted first-order logic[19] as its core rep-
resentation. Many-sorted first-order logic can be thought of as
first-order logic with types. Athena’s native support for ma-
nipulating sentences of this logic make it especially suited for
defining policy domains, formulating policies, and reasoning
about them. The policy engine built in Athena interfaces with
SMT solvers.

Satisfiability modulo theories (SMT) [22] is a recent tech-
nology that can be viewed as a generalization of propositional
satisfiability. An input to an SMT solver is a quantiﬁer—freeﬂ

'Some SMT solvers accept quantified sentences, but these are typically re-
moved using various heuristics [[16]].

formula with various interpreted and uninterpreted function sym-
bols. The interpreted atoms of the formula come from back-
ground theories such as linear (integer and rational) arithmetic,
inductive data types, uninterpreted functions with equality, the
theory of lists, extensional arrays, fixed-size bit vectors, etc.
The satisfiability of an input formula p is determined by these
background theories along with the Boolean structure of p. An
SMT solver will determine whether p is satisfiable, and if it is,
it will also provide a satisfying model. Thanks to their ability to
“understand” useful background theories, SMT solvers are en-
abling a wide array of applications that would have been either
impossible or impractical with previous reasoning technologies
[22]]. The prior work [2]], [4]] describes how the logical policy
representation allows such diverse reasoning tasks as request
evaluation, consistency checking, and change impact analysis
to be directly formulated as SMT problems.

The three types Subject, Object and Action described in sec-
tion [I.T] as well as the type of Requests themselves, are de-
clared as domains in Athena syntax as follows:

domains Request, Subject, Object, Action;

Entities from the Subject, Object and Action domains are
considered as attributes of a Request entity, and they can be
retrieved through the following accessor functions, which are
specified for all policy vocabularies:

declare subject: [Request] -> Subject;
declare object : [Request] —> Object;
declare action : [Request] -> Action;

The square brackets are Athena’s syntax for indicating argu-
ment types.

Both rules and constraints are specified as lambda abstrac-
tions of one variable, that is, as unary predicates. This variable
is always of type Request, indicating that the topic of each pol-
icy rule and constraint is the requested action. Applying such
a predicate to a logic variable of type Request produces a first-
order sentence. This operation forms the basis of evaluating
requests. This representation scheme also admits a straightfor-
ward translation of XACML-style policy rules to sorted first-
order logic.

Now we consider the specific declarations that define a pol-
icy management system for a particular domain. For any given
policy domain, the types Subject, Object, and Action refer to
categories specific to that domain—for example, in the grading
domain the Objects are the grades to be assigned. These can be
represented by declaring type aliases for Subject, Object, and
Action:



define Requester := Subject
define Grades := Object
define Action := Action

(The name “Action” is suitable enough for this domain as it is.)

In this example, entities of the “Action” domain are the only
ones referred to explicitly, and so we declare named constants
for these:

declare assign, view, receive : Action

The properties of entities of the Subject and Object types
can be tested by means of recognizer predicates such as the
following:

declare isStudent [Subject] —-> Boolean
declare isFaculty : [Subject] —-> Boolean
declare isInternal [Object] —-> Boolean
declare isExternal [Object] -> Boolean

So an expression to state that the requester of an action is a
student would look like this:

(lambda (r) (isStudent (subject r)))

These type declarations describe the domain-specific por-
tion of the signature of the first-order language, and thus they
essentially comprise the logical lexicon portion of the natural-
language translation module. As we will see, the sorted logic
that gives structure to policy formulas also aids in translating
English sentences to policy rules. The types help in resolving
ambiguities and inferring information that is specified only im-
plicitly in the natural language form of a policy rule.

In the following sections we describe the algorithms and
technologies that our system uses to translate an English sen-
tence into a first-order policy rule or environmental constraint
that is consistent with these declarations.

3. Attempto Controlled English for Syntactic Parsing

Attempto Controlled English, or ACE [135]], is described as
“a formal language with English syntax.” Its specification con-
sists of an unambiguous grammar for a subset of English, and
is integrated with a set of tools translating ACE sentences to
various semantic forms. The Attempto Parsing Engine (APE)
is a parser and set of semantic analysis modules conforming to
the ACE specification.

The grammar used for parsing ACE contains 229 context-
free production rules augmented with binary features to indi-
cate grammatical number, gender, etc. ACE specifies a map-
ping of controlled English sentence constituents to well-known
categories of phrase structure grammar, e.g., sentence (S), noun
phrase (NVP), verb phrase (VP). ACE handles declarative, imper-
ative, and question sentences and auxiliary and modal verbs,
but only present tense. The category of declarative sentences
is named “specification.” Conditional (“if-then”) sentences are
treated specially as their own subcategory of specifications, which
is especially suitable to our purposes, since policy rules are ex-
pressed as conditionals. Figure[2]presents an example ACE syn-
tax tree for the sentence “If the requester-type is Faculty and the
action is Assign then the request is allowed.”

ACE sentences can be read and understood by anyone who
knows English. In order to write ACE sentences reliably, a
small amount of training is necessary to navigate the syntactic
restrictions that ACE imposes on English. For example, con-
junctive coordination of adjective phrases or noun phrases is
allowed, but disjunctive coordination is not; disjunctive coordi-
nation must be done at the VP or sentence leve. For example,
if a policy author wishes to say “The grades are internal or ex-
ternal”, it is necessary to write “The grades are internal or are
external”. This is to prevent ambiguity in the grouping of AND
and OR, as it allows us to assume that OR always has lower
precedence than AND.

The APE parser defaults to a closed lexicon but will option-
ally guess the part of speech of unknown words. APE allows
user-defined lexicons that can augment the built-in lexicon or
replace it entirely. Terms are added to a lexicon by writing
a Prolog fact specifying the word, its base form and part of
speech, along with any grammatical features required for the
part of speech, such as number or gender. This collection of
such rules corresponds to the box labeled “domain lexicon” in
Figure [I| Our system works by augmenting the built-in lexi-
con with both domain-independent policy terms and domain-
specific vocabulary.

We also use domain-specific lexicons to build in additional
flexibility of expression without affecting the grammar directly,
including common synonyms and misspellings. The preproces-
sor is also used to slightly loosen ACE’s syntactic restrictions
when we feel there is no danger of affecting the semantics;
for instance, we allow optional commas in lists and between
clauses by removing them in the preprocessing stage.

The APE parser for ACE is utilized in our system as an ex-
ternal program module. To parse an input sentence, we first
tokenize and preprocess it, call the APE parser specifying the
custom lexicon, and then read the parse tree into a data struc-
ture.

4. Semantic Analysis

Syntactic parsing is usually considered part of the “front
end” of natural language analysis. Before the computer can
process the content of the sentence in a meaningful way, a se-
mantic analysis must be performed on the output of the parser.
The remainder of this paper will be concerned with semantic
analysis.

The ACE suite of tools provides its own set of semantic
analysis tools that can translate the parse tree of an ACE sen-
tence directly into first-order logic in the form of Discourse
Representation Structures (DRS) [17]. However, our system
does not make use of these; of the components provided in the
ACE toolkit, we only use the syntactic parser, APE, and have
developed our own semantic analysis code from scratch. Here
we discuss our reasons for doing so.

The primary reason is that the most general possible transla-
tion of a sentence into logic is not necessarily the one best suited
to any given application domain. The translation provided by
the ACE tools cannot take advantage of any domain-specific
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Figure 2: A sample ACE parse tree.

presuppositions in order to generate a more precise meaning. In
the case of policy engines, the form of policy rules and the en-
vironments in which they operate are highly constrained. Since
we know we are dealing with sentences that represent policy
rules or constraints specified within a given framework, we can
often infer more meaning from the syntax than the ACE tools
can.

For example, APE can syntactically parse the sentence “The
grades are external”, but if we try to obtain a FOL or DRS repre-
sentation, the analysis module complains that the definite noun
phrase “the grades” has no antecedent. However, we know that
in this case “grades” must refer to an attribute of the requests
that are to be tested by this policy rule. More specifically, our
domain-specific lexicon tells us that “the grades” refers to the
object of the request with which the sentence is concerned. So
we can directly generate the concise logical form (lambda
(r) (isExternal (object r))). For this reason, we
may in principle obtain broader interpretive coverage than a
system that uses the output of APE’s semantic analyzers.

A second reason for developing our own semantic analysis
is that the logical representations generated by APE contain un-
necessary details that are not relevant to the policy domain—for
instance, the analyzer represents the distinction between count
and mass nouns explicitly in the logical output. This is not a
shortcoming of ACE itself, but arises because the APE parser,
being totally general, cannot know in advance which syntactic
features are relevant for the desired semantics. So at any rate,
we would not be able to use the output of APE’s semantic ana-
lyzers unmodified.

Other work has reflected the reality that the output of ACE
tools often requires further processing for use in any given ap-
plication. When Bernstein et al. [[6] provide an ACE-based
natural language query interface for ontologies, they take the
DRS output of APE and use rewrite rules to map the discourse

structures to the PQL query language. In our case, develop-
ing our own semantic mapping from scratch allows us to apply
the well-studied principles of formal compositional semantics
starting from Montague [21] more directly. We can even de-
part from the semantics specified by ACE when it is not a good
match for the application. One instance of this relates to pro-
noun resolution. As discussed below, we found APE’s pronoun
resolution algorithm a poor fit to sentences describing policy
rules. Overall, our solution to the semantic translation problem
is quite robust within the context of policy frameworks.

4.1. Lambda calculus-based mapping of syntax trees

The mapping of syntax trees to logical forms is done ac-
cording to the method pioneered by Richard Montague [21],
which we will proceed to describe. We do not utilize the full
equipment of Montague’s intensional logic, but take an approach
based on first-order logic similar to that described in Blackburn
and Bos’s computational semantics textbook [7].

In Montague semantics, the sentence constituents found in
the parse tree, such as noun phrases and verb phrases, are con-
sidered to have lambda calculus expressions for their denota-
tions. To derive the interpretation of a sentence from its parse
tree, nodes in the tree are mapped to lambda calculus formulae,
and then these “semantic attachments” are propagated up the
tree by means of function application. Finally, the root of the
tree will be associated with a single lambda expression. If the
mapping specified is consistent, beta-reducing this expression
results in a closed first-order formula (excepting, in our imple-
mentation, a single outermost lambda abstraction) that repre-
sents the meaning of the sentence.

In the case of a parse tree derived using a context-free gram-
mar, it is often practical to associate a combination rule with
each syntax production in the grammar. This allows us to use
combination rules beyond just left-to-right function application.



For example, we can associate the operation of function appli-
cation with the grammar production for predication (the com-
position of a noun phrase and verb phrase to form a sentence),
and we write the production followed by its composition rule in
braces:

S — NP VP {(VP NP)} (1)

In writing the combination rule, the nonterminal symbols are
used to refer to their associated lambda expressions (derived
lower in the tree.) So to construct the meaning of a sentence
consisting of an NP and a VP, we apply the noun phrase as an
argument to the verb phrase.

Montague’s truth-conditional semantics specifies a set of
types for the denotations of sentence constituents. The type e
represents entities, and the type ¢ stands for truth values. These
types constrain the ways constituents can be combined, so that

only constituents with well-defined meanings can be constructed.

Valid declarative sentences are those where the applications re-
sult in an expression of type ¢. In the above example, if the
type of a noun phrase denotation is e, then the type of a verb
phrase denotation can be e — ¢, and the result of the applica-
tion (VP NP) is indeed an expression of type t. These types are
not represented explicitly in the system but provide the princi-
ples for constructing lambda expressions for the grammar rules.

As an example of the mapping process, note the syntax tree
of the sentence “the grades are external’”:

S
/\
NP VP
N N
Det N Aux AP

I I I I
the grades are Adj

|
external

For purposes of clarity, unary syntax productions that carry
no semantic content in this translation have been omitted. Here
are the semantic attachments for the applicable syntax produc-
tions:

S — NP VP Ar. (NP VP)
NP — Det N (Det N)

N — “grades” (object )
Det — “The” An.Ae.(en)
VP — Aux AP (Aux AP)

Aux — “are” Ao.\s.(0 s)
AP — Adj Aw. (Adj w)
Adj — “external” isExternal

These rules show that predication, modification by adjec-
tives and auxiliary verbs, and complementation (pairing of verbs
with their grammatical objects) are basically all done by func-
tion application. Also notice that the auxiliary “are”, being a
transitive verb, takes two arguments, the first representing the
object of the sentence and the second representing the subject.
The domain-specific part of this mapping is to determine that
the adjective “external” has the denotation of a predicate named

“isExternal”, and that “grades” refers to the Object attribute
(not grammatical object) of the request variable. The variable r
is reserved for the request entity, which is always bound in the
outermost lambda abstraction of the sentence.

The form of the expression for the determiner “the” requires
some explanation. For now, note that it has no semantic effect
on the noun it modifies, and only acts to place its first argument
in the argument position of an application, and its second ar-
gument in the operator position. This is necessary because the
expression for S — NP VP applies the NP to the VP, rather than
the other way around as one might expect. This allows us to
model the sophisticated semantic effects of determiners such as
quantifiers and negatives, as described below in the discussion
of quantification.

The un-reduced lambda form for the entire sentence is

(Ar.((An.Xe.(e n) (object 7))
(Mo.As.(0 s) Aw.(isExternal w))))

which reduces, as we hoped, to
Ar.(isExternal (object r)).

Our mapping does not cover the entire range of ACE Syn-
tax, but it covers all major forms of declarative sentences and
includes possessives, prepositional phrases, and coordination,
providing significant flexibility in expressing policy rules and
constraints. Our mapping also covers numerical relations, for
policies involving numerical reasoning. (The cognitive radio
domain, described in [3]], is notable for its extensive use of nu-
merical attributes.) Approximately 90 mapping rules are de-
scribed at present, several of which cover multiple syntax pro-
ductions due to pattern-matching. If the user enters a sentence
that is syntactically parseable by APE but that the semantic
module does not know how to interpret, the analysis module
will produce an informative error message.

We now discuss the more advanced issues addressed in the
lambda-calculus based semantic analysis.

The role of types. As mentioned above, in the policy frame-
work, the entities of concern are divided into types Request,
Subject, Object, and Action. We do not incorporate these types
into the lambda calculus itself; to do so would make it more
difficult to combine expressions flexibly (basically, we would
have to implement a polymorphic calculus.) Instead, we im-
plement a non-formal method for deriving type information for
domain-specific words, using the logical lexicon. The logical
lexicon is simply a mapping of words to the predicate name or
formula that each denotes, plus a grouping of these predicates
into the four types. The semantic analysis module contains a
procedure for determining the type of the entity represented by
an NP “after-the-fact”, by analyzing the structure of the NP and
performing a lookup in the logical lexicon.

The type information is used in the translation module is as
an additional source of information for distinguishing between
identical syntactic forms that require different logical represen-
tations in the policy engine. For instance, this is needed for
the mapping of the grammar rule VP — Aux NP, where the

Auxiliary verb is “is” or an equivalent. As stated in section



[I.1] in the policy engine, the members of type Action, such as
“read” or “assign” in the grading domain, are named explicitly
by first-order constants, while members of the Subject and Ob-
ject types typically have their properties tested by predicates,
such as “isFaculty()” or “isExternal()”E] Therefore “The ac-
tion is Assign” should have a logical form using the equality
relation, (= assign (action r)), while “The requester
is Faculty” should be translated to (isFaculty (subject
r) ). This distinction cannot be made from syntax alone, but is
easily handled when we look up the types corresponding to the
nouns “assign” and “faculty” in the logical lexicon. The auxil-
iary verb also generates the equality relation in the case when
numeric attributes are used.

Quantification, Coordination, Negation. In the above dis-
cussion of the types used in Monatgue grammar for semantic
composition, noun phrases were considered to have type e, for
‘entity’. In fact, in Montague’s system and ours as well, the
type of NP denotations is not e but (¢ — ¢) — ¢. This is an
instance of type-raising that allows us to correctly handle noun
phrases containing quantifiers, as described in Montague’s sem-
inal ‘PTQ’ work [21]. We generalize the lambda calculus deno-
tations of all NPs to this form, having them take an argument,
so that both quantified and non-quantified NPs can be treated
uniformly. This type-raising technique is developed futher, for
all constituent types and not just NPs, and given a principled
analysis with new applications in Barker and Shan’s work on
continuation grammar [3]], [23].

For policy rules and conditions, only universally quantified
sentences are allowed, and in fact the first-order quantifier is
not inserted when translating an English expression with quan-
tifiers. For example, “Every request whose requester is Faculty
is allowed” is translated as
(lambda (1)

(if (isFaculty (subject r))
(allow r)))

This makes sense because in the policy engine, sentences
are never interpreted over the entire universe of requests but are
predicates that are applied to individual requests.

Though the conditional expression is generated without the
first-order quantifier, this still requires us to model the wide
scope-taking behavior of quantifiers, since the conditional must
take scope over the whole sentence. The ability of a constituent
to take wide scope is modeled in the lambda calculus rules by
expressions that take their own continuation as an argument.
In the field of functional programming languages, a continua-
tion is the “default future” of a computation, represented as a
function, allowing control flow to be manipulated by means of
calling the continuation. In semantic interpretation, the con-
tinuation is the function that accomplishes the interpretation
of the remainder of the sentence. Providing a sentence con-
stituent with access to its own continuation allows that con-
stituent to take wide scope over the remainder of the sentence
when needed. A continuation grammar is one in which the

2Note that the types “Subject” and “Object” used in the policy engine do
not correspond to grammatical subjects and objects.

lambda calculus expressions of the semantic attachments spec-
ify such access.

This accounts for the form of the the determiner “the” shown
above. Here we show the semantic attachment (in braces) for
another determiner, “every”:

Det — “every” {An.Ae.n — c} 2)

An NP containing this quantifier takes wide scope over the
VP by taking the VP as an argument, here shown by c. This
necessitates reversing the order of application from that shown
in section[d.T}, to compose a sentence, the NP must be applied to
the VP. For this reason the expression for all NPs, not just those
representing quantifiers, must be altered to take its continuation
as an argument. For NPs that represent simple entities (such
as proper nouns), the denotation is written Ac.(c noun). This
behavior can be seen as the NP taking the VP as an argument
and then, in turn, placing itself in the argument position of the
VP.

The mapping for “every” also shows that it is not necessary
to write a conditional sentence in English to specify a policy
rule, even though the logical form of a policy rule must indeed
be a conditional. In many cases it may be more concise and nat-
ural to specify a rule as a universally quantified sentence. But
we could just as well have written, “If the requester is Faculty,
the request is allowed.” and it would be translated identically.
This is an instance of the grammatical flexibility that we gain by
handling quantifiers in a principled fashion. Further examples
can be seen in the policy translation in the Appendix.

Coordination is another language phenomenon that causes
scope displacement. In English, coordination can occur be-
tween almost any type of constituent; in particular, we can co-
ordinate NPs as well as VPs. Recall the example sentence ‘“No
action is a view and an assign.” It was written as a NP coordina-
tion, but it could equivalently be written as a VP coordination,
“No action is a view and is an assign.” Both of these forms
should be translated into the same logical form. To see how
this is handled, note the lambda calculus denotation of an NP
“and”-coordination:

NPeoora — NP; “and” NPy {Ac.(and (NP; ¢) (NP, ¢))} (3)

By the use of continuations, wherein the NP is a function that
receives its context as an argument, the NP can distribute its
coordination across its context. In the case that the NP is in
subject position, we can simply apply it to the VP as shown
above. However, to allow an object NP to take scope over the
the entire sentence, as in “No action is a view and an assign,”
we need to modify the attachment describing application of a
(grammatical) object NP to a transitive verb as follows:

VP — VT NP {Ac.(NP An.(VT n) ¢)} 4

Generating an outer abstraction over ¢, where c is applied to the
object NP, is what allows the object NP to take scope over the
whole sentence. If the NP does not take wide scope by manip-
ulating its continuation, this form is equivalent to applying the
verb to an object NP representing an entity. This form is used
even when the VT is an auxiliary verb, as in the above example.



In addition to an NP coordination, this sentence also con-
tains a quantifier, the negative determiner “No”, representing
universal quantification over a negated sentence. Negations can
also take wide scope, and so we have the following continuized
form for the negative determiner:

Det — “no” {An.Ac.(not ¢ n)} Q)

In this case we also need to ensure that the negative takes wide
scope over the conjunction. But this is already taken care of
because the subject NP is given the place that can take widest
scope. Applying the reduced denotation of the NP to the re-
duced VP, the sentence is:

Ar.(Av.(not v (action 7)) Ac.(and (= c¢ view) (= c assign))),
which reduces to
Ar.(not (and (= (action ) view) (= (action r) assign))),

which is equivalent to the form shown previously in code. These
forms embody the rule of surface scope for quantifier ambiguity
resolution.

4.2. Pronoun Resolution

An important semantic problem not addressed by the the
lambda calculus-based mapping is pronoun and anaphora res-
olution, which is a long-studied and difficult research problem
in computational linguistics. Our system needs to handle ba-
sic pronoun usage in order to specify policy rules in natural-
sounding English, for example “If a transmission’s power is
above 900 then it is denied.” The most prevalent NLP solutions
to anaphora resolution are computationally and representation-
ally complex. To utilize such a solution would be overkill for a
domain where we are primarily dealing with single sentences,
and it could not be implemented in a short time.

The ACE semantic analysis tools make use of a basic algo-
rithm for resolving pronouns, which is used in ACE’s mapping
to first-order logic and DRS. Even though we are only using the
ACE tools for syntactic parsing, it is still possible to take ad-
vantage of the resolution capability by means of the software’s
“paraphrase” feature. The paraphrase module of the ACE tools
takes an input sentence and generates a new English sentence or
sentences with anaphora resolved by means of variables. The
generated paraphrases make use of a smaller range of syntac-
tic constructions than the parser can recognize, which gives the
potential for simplifying the problem of mapping syntax trees
to logical forms. As an example, if we input the sentence (with
no pronouns)

If the requester of the request is Faculty then the
request is allowed.

Then we will obtain the paraphrase

If a requester of a request X1 is Faculty then the
request X1 is allowed.

The first thing we may notice is that the parser has changed
“the requester” to “a requester” and the first “the request” to
“a request”. When the parser encounters a definite article that
does not refer to an explicit antecedent, rather than assume the
existence of a unique entity (which in general text is too strong
a presupposition) it simply substitutes the indefinite. This is not
a concern to us, since in our translation to policy rules both the
definite and indefinite articles map to the identity function.

Returning to the issue at hand, we see that the paraphrase
operation has assigned variable X/ to the request entity and
given the second mention of the request the same referring ex-
pression. These variables are a part of the ACE grammar, and
so this paraphrase can then itself be parsed into a syntax tree
that contains the variables. Then we can use the ACE variables
directly in the logical form that we generate, and so we auto-
matically have a form with correct variable references.

However, we cannot rely on the ACE paraphraser to gen-
erate variables for us in every case. No variable is generated
when there is only a single reference:

If the requester is a student then the request is de-
nied.

If a requester is a student then a request is denied.

Since the logical form of a sentence always requires at least
one variable, relying on ACE variables may make it more diffi-
cult to use a uniform approach to generating logical forms from
syntax trees. Moreover, the pronoun resolution algorithm used
by the ACE tools is a poor fit for this problem domain; it always
takes the most recent noun as the antecedent. The following
example paraphrase shows how this is often inappropriate for
policy rules:

If the requester of the request is a faculty then it is
allowed.

If a requester of a request is a faculty X1 then the
Jaculty X1 is allowed.

The pronoun “it” is here clearly meant to refer to the request
itself, but the ACE tools resolve it to the subject of the re-
quest, i.e. “the faculty”. For these reasons, the solution of rely-
ing on the variables generated by these paraphrases to resolve
anaphora was dropped. However, rewriting methods are well
attested in NLP applications such as machine translation, and
the examples we have shown give some flavor of its potential.
In particular, this paraphrase rewrite is “safe” for ACE toolkit’s
default interpretation, because it preserves the semantics of the
sentence as defined by ACE.

A sufficient solution to resolving anaphora in policy rules
and conditions turned out to be simpler than expected. In the
realm of access-control policies, the sentences we deal with of-
ten have a “fixed referent” flavor, in which the topic of every
sentence is the action request to be evaluated. In general, the
request is the only entity in a rule that is referred to more than
once. So we assume that any impersonal pronouns and uses
of the word “request” (or one of its synonyms) always refer to



one and the same request, namely the referred to by the lambda
variable in the logical form. So, for the above example, in our
system it is sufficient to input “If the requester of the request is
Faculty then the request is allowed.”

Of course, “requester of the request” is still awkward. But
the “fixed referent” property also allows us to interpret sen-
tences in which the reference to the request is left implicit. So
we can even enter the sentence “If the requester is Faculty then
it is allowed.” and the translation module will produce what is
presumably the intended logical form:

(lambda (r)

(if (isFaculty (subject r))
(allow r)))

Note that it is still possible to specify environmental con-
straints which do not refer to the request variable at all. For
example, the constraint “A view is not an assign” is translated
to the expression:

(lambda (r)

(not (= view assign))),

which is correct within the logical framework’s representation.

5. Generating Domain-Specific Lexicons from Type Decla-
rations

As described above, the domain-specific portion of the trans-
lation module is comprised of two components: the syntactic
lexicon, which gives part-of-speech and other grammatical fea-
tures of words, and the logical lexicon, which gives the name of
the logical predicate or constant to be used for a term, as well
as the type that an entity described by that term would have.

Translation Module

f !
] Domain 1
: Lexicon \
' Domain )
: Type '
i Declarations 1 )
i 1 Semantic :
] 1 Lexicon \
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1 1 1
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Figure 3: Syntactic and semantic lexicons derived from type declarations.

The amount of lexical knowledge that needs to be produced
to adapt the system to a new domain is relatively small. The
process of doing so can be streamlined even further, by generat-
ing both lexical components automatically from a single source
of information—the domain type declarations used in the policy
framework (see Figure[3]) As stated in section [2] the type dec-
larations of the policy domain are in fact a logical-form lexicon,
or signature. These also often contain sufficient information to
provide “sensible default” word forms and parts of speech for
the syntactic lexicon.

As shown in section [2] there are three categories of type
definitions and declarations that must be specified in the policy
framework for each domain. We call these Type Aliases, Action
Types, and Property Testers. For each of these kinds of declara-
tion, there is a uniform mapping to entities in the syntactic and
logical lexicons.

The domain-specific Type Aliases for Request, Subject, Ob-
ject, and Action are declared as nouns in the syntactic lexicon,
and in the logical lexicon, accessor functions of the correspond-
ing names can be inserted. For example, “requester” is logically
“(subject r)”.

The Action Types are inserted in the syntactic lexicon as
nouns, and are mapped to their identical names in the logical
lexicon, as they correspond to entity types.

The Property Tester predicates, which are all named begin-
ning with “is”, e.g., “isStudent” or “isTA”, are inserted in the
syntactic lexicon as nouns by removing the “is” prefix. The
logical lexicon maps this noun back to the “is” predicate name.

Table[T|shows the correspondence between sample type dec-
larations in the policy engine, the syntactic lexical entries, and
the logical lexicon’s mappings.

Thus a simple script can generate “draft” lexicons from the
type information. We say “draft” because of course, the lan-
guage produced by this process is not always completely natu-
ral. The CONTINUE policy has a predicate named “hasSubmit-
tedReviewForResPaper”. Ideally, the parser would recognize a
phrase of the form “The reviewer has submitted a review for the
paper” as an instance of this predicate, but this would require
modifying not only the lexicon but the grammar itself. In most
cases, however, the work required to adapt the lexicon to a new
domain is much simpler—for example, adding synonyms and
plural forms. The automatic generation of the draft lexicon can
be seen as providing a starting point for this work, from which
the lexicon can be further tailored.

6. Natural Language Translation for Question Answering

This translation approach, coupled with the SMT-solving
policy framework, can also provide a straightforward imple-
mentation of natural language question answering regarding poli-
cies. This is an example of a closed-domain question answering
system in the lineage of the classic LUNAR system [24]].

In the policy framework, a request is considered “complete”
if it specifies constraints for the Subject, Object, and Action. A
question can then be seen as an incomplete request, one with
missing constraints. Question sentences translated into a logi-
cal form can be answered simply by calling the solver or theo-
rem prover on that form, so that the prover generates satisfying
values for the missing constraints.

The ACE parser already supports several types of question
syntax, including Wh-questions. Consider a Wh-question such
as the following: “Which requests whose requester is Faculty
and whose action is View are allowed?” The desired answer
to such a question is a set of objects that satisfy property con-
straints, with the “whose” clauses serving to specify those con-
straints. Our software translates such a sentence into the logical
form of a conjunction of the constraints:



Athena Declaration ACE Lexicon Entry Logical Lexicon Entry
defjl_ne Requester := n.sg(requester, requester, ("requester", (subject r))
Subject neutr)
declare assign Action n-sg(assign, assign, ("assign", assign)

neutr)
declallre isFaculty n_sg(faculty, faculty, ("faculty", isFaculty)
[Subject] —-> Boolean neutr)

Table 1: Sample mappings from logical type declarations to lexicon entries.
(lambda (r) e Write the rules in natural language, and attempt to parse
(and (and (isFaculty (subject r)) them with the new translation module.
(= (action r) view))

(allow r)))

The same question type can be posed using “is-there” syn-
tax. For example, the sentence “Is there a request that is allowed
and whose requester is Faculty and whose action is View?” will
be translated into the same logical form.

The answers to these questions are then obtained by apply-
ing the predicate (rule procedure) to a single logic variable, pro-
ducing a first-order formula, and calling the SMT solver on the
formula, with the solver configured to produce all satisfying as-
signments. The solver’s output will consist of attribute values
for which the formula is satisfied—in the case of policies, val-
ues for which an instantiated access request would be accepted.
For the above example, if Faculty members are allowed to view
both internal grades and external grades, the solver would re-
turn two request objects, each of which has all the attributes
as given in the question, and one with the missing “grades”
constraint as (isExternal (object r)), the other with

(isInternal (object r)).

This formulation of question answering only allows us to
handle queries where the topic is a request. However, this is the
key type of question that must be handled in order to implement
a system of negotiated permissions such as that described in
Bonatti et al. [9]], in which requesters seek to determine a set of
parameters that would cause their requests to be accepted.

7. Evaluation

To evaluate the flexibility of our translator and ease of adap-
tation to new domains, separate versions of the translator were
instantiated for three distinct policy domains, each of which had
previously developed policy rules and conditions. These are:
the grading domain previously mentioned, conference manage-
ment as modeled in the CONTINUE policy described in [[14],
and dynamic spectrum access for cognitive radios, described in
(2] [4].

The following are the steps we followed in building each
new translator, which we consider a “natural” workflow for
porting the translation module to a new domain:

e Specify the domain type signature for use by the policy
framework.

e Use a script to automatically generate the initial domain-
specific lexicons from the type signature.
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e Refine the lexicon entries by hand so that the rules can be
expressed in more natural vocabulary.

o Test the semantic correctness of the translated formal rep-
resentations of the rules and conditions.

Developing the domain-specific lexicon required a very small
amount of work in each case as only the lexical resources for a
small vocabulary had to be adapted, as described in section [3]
For the three policy domains, we verified that the logical forms
produced were accepted as correctly typed predicates in the pol-
icy engine and were logically equivalent to the original policy
rule. For the CONTINUE policy set, we developed a XACML-
to-FOL translator in order to compare the FOL output of the
translator to the original XACML form of the policy.

The complete set of rules and constraints for the grading
domain is given in the Appendix.

8. Discussion

The advances in this work can be seen to derive from two
key observations. The first is the flexibility and generality of the
lambda calculus and first-order logic. Lambda-calculus-based
compositional analysis has been a mainstay of computational
semantics [7]. It provides high flexibility plus straightforward
integration with syntactic parsing. First-order logic remains one
of the most versatile knowledge representations for natural lan-
guage, and gains clarity by use of types. The advent of efficient
SMT solvers has made reasoning over first-order representa-
tions a much more practical possibility when the domain is fi-
nite or has a decision procedure.

The only danger in using the untyped lambda calculus lies
in its high flexibility. Without a disciplined approach to mean-
ing composition, it is easy to become mired in “grammar hack-
ing” when one tries to expand the coverage beyond trivial sen-
tences, and end up with a solution that does not generalize
cleanly. Continuation grammar [J5], [23] provides exactly such
a discipline. To our knowledge, ours is the first work in the
area of policy frameworks to use the continuation semantics
paradigm to handle more sophisticated scoping phenomena for
broader semantic coverage.

The second observation is that the implementation of se-
mantic theories in natural-language interfaces can and should
make assumptions relevant to the application domain. The most
obvious employment of this principle is in simplifying the task



of generating domain-specific lexicons; by constraining the mean-
ings of words to a predefined context, we help bring lexical
ambiguity under control. Also, the “fixed referent” feature of
policy rules is what made coreference problems satisfactorily
solvable, and in fact gave higher precision for this application
than a technology that attempts to resolve anaphora in a gen-
eral setting. Though work in solving these “deep semantic”
problems in uncontrolled text is worthwhile in its own right,
we believe that for the foreseeable future, solutions in deployed
systems must be developed using an application-informed se-
mantic theory, rather than in full generality. As we have seen,
this does not in any way prohibit the use of generalized tools
and representations, such as the lambda calculus and first-order
logic.

9. Future Work and Conclusion

One obvious expansion of this work is to implement gener-
ation, that is, translating logical-form rules and constraints back
to natural language sentences. However, this feature is not im-
mediately urgent in the current application, since once a policy
rule, condition, or query is given as input in natural language,
this natural language sentence can be stored along with the log-
ical representation and presented again in subsequent human
interaction with the system. A potentially enlightening user
study would be to see whether the variations produced by re-
generating natural language from logical forms could be used
to help analysts clarify the meaning of policy rules.

We plan to implement a more advanced question-answering
interface, while continuing to expand the grammar coverage. A
method for generating explanations of denied requests based on
outputting policy rules is planned.

We have considered developing a graphical tool that makes
it easier to input grammatically correct ACE sentences. The
study documented in [[18]] confirms that users are able to author
rules of significantly higher quality when using a UI with assis-
tance than when entering natural language unguided. One such
tool already existing for ACE is the predictive editor included
with the AceWiki system [12]. (The Protune system also in-
cludes a command-line interface for entering ACE sentences.)
We have found the predictive editor somewhat unwieldy to use
because it involves choosing words in sequence from long lists
of possible candidates. If the wrong function word is chosen,
the user gets “stuck” and must back up to try different struc-
tures. A more advanced predictive editor is stated to be in de-
velopment by the authors of [12]. In our perception, an optimal
solution would be an auto-corrector or a tool that offers “ad-
vice” while typing, though admittedly such a system would be
much more difficult to implement.

Though we used controlled natural language for this project,
it is not strictly necessary to do so. The semantic mapping
described here could be applied just as readily to the output
of a wide-coverage statistical parser such as the Collins PCFG
parser [[L1]. In this case, since the parse trees produced by such
a parser do not follow a concise grammar, a mapping would be
developed to handle the subset of parse trees most relevant to
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specifying knowledge in the realm of access policies, and gen-
erate an error message or request for clarification otherwise.
Natural language interfaces for policy frameworks facili-
tate better policy authoring, transparency, and maintenance. We
have shown how to implement a semantically principled trans-
lator with an existing controlled-language parser that can quickly
be adapted to new domains. It is our hope that this work will
contribute to the adoption of modular architectures for adding
natural-language interfaces to policy frameworks.

Appendix A. Complete Translation of the Grades Policy

To show the flexibility of the translation, multiple English
sentences are given for some rules. The rules are labeled by the
names given in [14]].

Appendix A.lI. Policy Rules

Pr1: “If the requester is a student and the action is an assign
and the grades are external then the request is denied.”

(lambda
(if

(r)
(and (isStudent
(and

(subject r))

(= (action r) assign)
(isExternal (object r))))
(deny r)))

Pr2: “If the requester is Faculty and the action is Assign
then the request is allowed.” / “Every request whose requester
is Faculty and whose action is Assign is allowed.”

(lambda
(if

(r)

(and (isFaculty (subject r))
(= (action r) assign))

(allow r)))

Pr3: “If the action is an assign and a receive and the grades
are external then the request is denied.”

(lambda (r)
(if (and (and (= (action r) assign)
(= (action r) receive))
(isExternal (object r))
(deny r)))

Prd.1: “If the grades are internal and the requester is a TA
and the action is an assign or is a view then the request is al-
lowed.”

(lambda (r)
(if (and (isInternal (object r))
(and (isTA (subject r))
(or (= (action r) assign)
(= (action r) view))))
(allow r)))

Pr4.2: “If the requester is a TA and the grades are exter-
nal, and the action is an assign or is a view, then the request is
denied.”

(lambda (r)
(if (and (isTA (subject r))
(and (isExternal (object r))
(or (= (action r) assign)
(= (action r) view))))
(deny r)))



Appendix A.2. Environmental Constraints

“No action is a view and an assign.”

(lambda
(not

(r)
(and view)

assign))))

(=
(=

(action r)
(action r)

“No requester is Faculty and a student.”

(lambda
(not

“If a requester is a TA then the requester is a student.

(r)
(and (isFaculty

(isStudent

(subject r))
(subject r)))))

I

(lambda (1)
(i1f (isTA (subject r))
(isStudent (subject r))))

“A view is not an assign.”

(lambda (r)
(not (= view assign)))
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