
Practical and Privacy-Preserving
Policy Compliance for Outsourced Data

Giovanni Di Crescenzo1, Joan Feigenbaum2, Debayan Gupta2, Euthimios Panagos1,
Jason Perry3, Rebecca N. Wright3

1 Applied Communication Sciences, NJ, USA. E-mail:
{gdicrescenzo,epanagos}@appcomsci.com

2 Yale University, CT, USA. E-mail: {joan.feigenbaum,debayan.gupta}@yale.edu
3 Rutgers University, NJ, USA. E-mail: {jasperry,rebecca.wright}@cs.rutgers.edu

Abstract. A recently considered scenario for data outsourcing allows perform-
ing database queries in the following three-party model: a client interested in
making database queries, a data owner providing its database for client access,
and a server (e.g., a cloud server) holding the (encrypted) outsourced data and
helping both other parties. In this scenario, a natural problem is that of designing
efficient and privacy-preserving protocols for checking compliance of a client’s
queries to the data owner’s query compliance policy. We propose a cryptographic
model for the study of such protocols, defined so that they can compose with an
underlying database retrieval protocol (with no query compliance policy) in the
same participant model. Our main result is a set of new protocols that satisfy a
combination of natural correctness, privacy, and efficiency requirements. Tech-
nical contributions of independent interest include the use of equality-preserving
encryption to produce highly practical symmetric-cryptography protocols (i.e.,
two orders of magnitude faster than “Yao-like” protocols), and the use of a query
rewriting technique that maintains privacy of the compliance result.

1 Introduction

The recent information technology trend of outsourcing “big data” in the “cloud” is
being embraced in banking, finance, government and other areas. Banks and financial
institutions need to process huge data volumes on a daily basis; in government, large
databases are needed in many contexts (e.g., no-fly lists, metadata of communication
records, etc.). Cloud storage and computing provide tremendous efficiency and utility
for users (as exemplified by the ‘database-as-a-service’ application paradigm), but they
also create privacy risks. To mitigate these risks, database-management systems can
use privacy-preserving data-retrieval protocols that allow users to submit queries and
receive results in a way that users learn nothing about the contents of a database except
the results of their queries, and data owners do not learn which queries are submitted.
Of critical importance for the success of database management systems is the notion
of data security, which requires carefully crafted data-access policies. Compliance of
these policies can be enforced by the database-management system but might need to
be confidential, as the policies may reveal sensitive facts about the data and its owner.
In this paper, we formalize, design and analyze practical and privacy-preserving policy
compliance protocols for outsourced data.

Our problem: Our goal is to augment natural encrypted database retrieval solutions
with security properties, such as query authorization based on compliance to a policy,
while preserving the privacy and efficiency properties of the basic database retrieval
solution. For consistency with the database-as-a-service model, and to achieve practi-
cally efficient solutions, we consider a 3-party model, including a clientC (interested in
private data retrieval), a data owner D (offering data for retrieval conditioned to com-
pliance to a query-specific policy), and a server S (e.g., a cloud server) helping both
parties to achieve their goals. In this paper, we focus on the policy-compliance building
block. Our solutions combine in a modular fashion with database retrieval (DR) proto-
cols in the 3-party model, as shown in Figure 1, satisfying some natural structure and
properties (described later), and already exemplified, for instance, in [5, 11, 18].

S

Answer message ans
(function of query q, database DB)

Query message q
(function of query values v1,…,vd)

C

D

S

Setup subprotocol (database DB)

Fig. 1. Structure of a database-retrieval protocol

Our contributions. We investigate the modeling and design of database policy com-
pliance (DPC) protocols that combine with known DR protocols, as shown in Figure 2,
and that satisfy the following novel set of requirements:

1. Preservation of Query Correctness: A client that could retrieve all of the records
that satisfy its query using a DR protocol can still do so if the query is compliant;

2. Compliance Completeness: All queries that satisfy (resp., do not satisfy) the policy
are found to be compliant with probability 1 (resp., with negligible4 probability);

3. Compliance Soundness: For any efficient (and even malicious) adversary imper-
sonating the client, the data owner can correctly compute (except with negligible
probability) the policy compliance of whichever query message is received and an-
swered by the server according to the DR protocol;

4 A function is negligible if for all sufficiently natural numbers σ ∈ N , it is smaller than 1/p(σ),
for any polynomial p.

S

C

D

S

Query issuing subprotocol (query value v)

Compliance verification subprotocol (query value v, policy values w1,…,wc)

 Query rewriting subprotocol (query value v)

Answer in
Database Retrieval Protocol

DR Setup subprotocol (database DB)

 DPC

DPC

DPC

DR

Fig. 2. Composition of a DR protocol with a DPC protocol

4. Privacy: Privacy of database values, policy values and query values are preserved,
in that no efficient semi-honest adversary corrupting one among the parties C,S , D
learns more information than the following: the system parameters (which are in-
tended to be known by all parties), the compliance bit b (if the corrupted party isD,
to which b is intentionally revealed), the query message Q′ (if the corrupted party
is S , to which Q′ is intentionally revealed), where Q′ has the same distribution as
the query message Q in the DR protocol when the query is compliant, or otherwise
represents a query that does not match any records in DB (to reduce leakage of the
policy-compliance result to S or C);

5. Efficiency: The protocol should have low time, communication and round com-
plexity. One of the most significant design criteria we target to reduce computa-
tional overhead of query compliance checking is to minimize or eliminate costly
public-key cryptographic operations and to achieve protocols faster than a mere
application of secure function evaluation techniques.
Implicit in the above privacy requirement is the fact that the protocol does not reveal

new information about the data owner’s policy to client and server, other than what is
revealed to clients by fulfilled queries. Still, to hide some additional information about
the policy, the privacy requirement also demands that the result of a non-compliant
query is indistinguishable from a query that matches zero records in the database, so
that the protocol does not reveal to clients whether a query that returns no matches does
so because it is non-compliant or because there are actually no matching records5.

We design three protocols for enforcing compliance of keyword search queries. We
only consider whitelist (resp., blacklist) policy types, where the query is compliant only
if the query value is equal to one (resp., none) of the policy values. For such query

5 Of course, sometimes a client is able to distinguish these cases due to auxiliary information.

and policy types, we provide highly efficient and scalable database policy compliance
protocols which satisfy all our requirements, as detailed below (the PRP assumption
being the existence of pseudo-random permutations).

Requirement Protocol π1 Protocol π2 Protocol π3

Correctness if DR protocol satisfies if DR protocol satisfies if DR protocol satisfies
preservation Added Property 1 Added Property 2 Added Property 1
Compliance under no complexity under no complexity under no complexity
completeness assumption assumption assumption
Compliance (not satisfied) under no complexity under no complexity

soundness assumption assumption
Privacy under PRP assumption under PRP assumption under PRP assumption

(some leakage to S) (some leakage to S) and based on SFE
Time linear in policy size linear in policy size linear in policy size

Communication linear in policy size linear in policy size linear in policy size
Rounds O(1) in policy size O(1) in policy size O(1) in policy size

An additional important property is that all our 3 DPC protocols only require O(1)
cryptographic operations per query and policy value, and are about two orders of mag-
nitude faster than 2-party arbitrary function evaluation protocols [19], as these require
at least Ω(`) cryptographic operations per query and policy value, where ` denotes the
length of these values (even in recent optimized solutions). Just like achieved previ-
ously for DR protocols in the 3-party model, our DPC protocols not only minimize
or eliminate costly public-key cryptography operations, but they provide concrete time
efficiency, which we document through performance numbers from our implementa-
tions (in Section 4). Our solutions rest on two main technical contributions: (1) using
equality-preserving symmetric encryption, with multiple keys shared among different
subsets of parties (building on [3]), for efficient 3-party computation on encrypted data,
and (2) performing policy-based query rewriting to make the results of non-compliant
queries indistinguishable from queries matching no records. Formal definitions and
proofs are omitted due to space restrictions.
Related work. To the best of our knowledge, there is no previous work on privacy-
preserving, efficient, query policy compliance checking for database queries. That is,
although there has been previous work on 3-party protocols in which the data set being
searched is encrypted, the query is kept private, and queries are only allowed if they
satisfy certain structural conditions, we are unaware of previous work in which the
restriction on allowable queries (i.e., the policy) depends on the query and/or is kept
private from the clients. Existing work in this area focuses on policy conditions that
mainly depend on the database attributes (see, e.g., [11, 18, 5, 8]) or on the identity of
the clients (see, e.g., [16, 13, 4, 10], or consider different kinds of access control in such
systems (see, e.g., [14, 12]).

Our work is also somewhat related (in a complementary way) to a number of areas in
theoretical and applied cryptography, including private information retrieval [6], search-
able symmetric encryption [17], searchable public-key encryption [2] and oblivious
RAMs [9]. Previous cryptography work in a 3-party model (also referred as commodity-
based, server-assisted, server-aided model) seems to have originated in [1], with respect
to oblivious transfer protocols, and [7], with respect to private information retrieval.

2 Models, Definitions and Properties

We discuss models and DR protocol properties used in the rest of the paper, and further
clarify the privacy and security properties that our DPC protocols must satisfy.

Data, Query and Policy Models. We model a database table (briefly, database) as a
matrix DB with n rows andm columns, where each row is associated with a data record,
each column is associated with a data attribute, and each database entry DB(i, j) is the
value of the j-th attribute of the i-th record. The database schema consists of n, m, and
the domains of each of the m attributes (i.e., the j-th domain is the set of values that the
j-th attribute of a record can take on), and is assumed to be known by all parties that
participate in the protocol. We assume that domains are large in that a randomly chosen
domain element is, with very high probability, not in DB. (If DB does not satisfy these
conditions, then simple padding of domain strings can be used to make it so.)

A query q contains a database attribute and a query value v from the corresponding
attribute domain. We consider keyword-match queries of the following form (using
SQL notation): “SELECT ∗ FROMmainWHERE attribute name = v”.

A data owner’s query compliance policy (briefly, policy) contains, for each attribute
j ∈ {1, . . . ,m}, a set Wj = {wj,1, . . . , wj,cj} of policy values drawn from the j-th do-
main. All of the clients that access DB through this data owner are subject to the same
policy. On input a query value v, an attribute name (or, equivalently, an attribute index
j), and a set of attribute values Wj , the policy returns 1 (resp., 0) to denote query com-
pliance (resp., non-compliance). We mainly consider the whitelist and blacklist policies:
1. Whitelist: If query q refers to the j-th attribute, then p returns 1 iff v ∈Wj ;
2. Blacklist: If query q refers to the j-th attribute, then p returns 1 iff v 6∈Wj .

Intuitively, a blacklist policy captures the notion of a set of forbidden query values,
while a whitelist policy restricts queries to a specified set of allowed values. We assume
that the lengths cj of whitelists and blacklists and the lengths of the policy values wj,k
are system parameters known to all parties (although our protocols will keep the latter
values hidden from C).

DR protocol properties. We consider DR protocols, as depicted in Figure 1, with the
following structure:

1. C, D and S run a preliminary setup subprotocol
(this enables S to later answer C’s query on the database owned by D)

2. Given a query q, C constructs a query message Q and sends it to S
3. S computes an answer message ans and sends it to C
4. Based on Q and ans, C can compute database records that satisfy q, if any.

The unique-query property requires that, for any database DB and any properly
formatted query message Q, there is at most one pair (attribute name, v) for which C
could have generated query message Q. When such a pair exists, we refer to v as the
“query value associated with Q.”

The query-correctness property requires that, for any database DB, any input pair
(attribute name, v), and any Q with associated query value v, at the end of the DR
protocol, C can compute all records in DB that satisfy query attribute name = v.

We also impose some additional structural properties on DR protocols:

1. Added DR Property 1: At the end of step 1, S stores F (kc,d;DB(i, j)), for each
database entry DB(i, j), where F is a pseudo-random permutation and kc,d de-
notes a key shared between C and D;

2. Added DR Property 2: At the end of step 1, for each database entry DB(i, j),
S stores the triple encryption F (kc,d;F (kc,s;F (kc,d;DB(i, j)))), where F is a
pseudo-random permutation and kc,d (resp., kc,s) denotes a key shared between C
and D (resp., C and S).

Note the following simple DR protocol satisfying Property 1: query values and data
values are encrypted via a pseudo-random permutation, a query message contains the
encrypted query value, and the answer message contains the records with encrypted data
values equal to the encrypted query value. Other examples can be found in the literature
(see, e.g., [11, 18]). It should also be noted that any protocol satisfying Property 1 can
be turned into one that satisfies Property 2, and that our techniques will work with a
number of variations of these example properties.

DPC protocol properties. Our DPC protocols compose with DR protocols as follows
(see Figure 2): after the DR setup subprotocol, instead of a single query message Q
sent from C to S , we now have three subprotocols (a query subprotocol, a compliance-
verification subprotocol, and a query rewriting subprotocol) after which a query mes-
sage is sent to S , and then the answer step of the DR protocol can be executed.

The requirements we demand from any DPC protocol were already informally de-
scribed and motivated in Section 1. Here, we only further clarify its input/output be-
havior and privacy requirement. The inputs to a DPC protocol are a security parameter
1σ (known to all parties), an attribute name and query value v (private inputs to C),
and a database DB (schema known to all parties, but contents private to D). The out-
puts of a DPC protocol are a query message Q′ (communicated privately to S) and a
bit b (communicated privately to D) indicating whether the query complies with the
policy (b = 1) or not (b = 0). We consider privacy in multiple runs of the DPC pro-
tocol against a semi-honest probabilistic polynomial-time adversary Adv (with history
as auxiliary input) corrupting up to one party, by a natural adaptation of the real/ideal
security framework, as typically used in the cryptography literature. Briefly speaking,
a (real-world) execution of multiple runs of the DPC protocol are executed, does not
leak to Adv more than the ideal-world leakage, defined as follows. On input of a query
value v given by C, a database DB, policy values w1, . . . , wc, and policy p input by D,
each ideal execution of a single DPC protocol returns:

1. the output b of policy p on input query value v and policy values w1, . . . , wc to D
2. a random query message Q′ to S , where Q′ has no matching records if b = 0 or

has associated query value v if b = 1.
In our first two protocols, we admit some additional leakage to S, and consider the
variant of the above definition, where such leakage is also admitted in the ideal world.

Our design also targets a number of additional security properties, which can be
obtained using network security protocols such as TLS: confidentiality of the com-
munication between all participants, message sender authentication, message receiver
authentication, and communication integrity protection.

3 DPC Protocols

In this section we present our three DPC protocols (whose properties are detailed in
Section 1). Our first protocol π1 falls short of satisfying all requirements formulated
in Section 1 and 2 in two ways: (a) it does not satisfy compliance soundness (i.e., a
malicious C could send inconsistent encryptions for compliance verification and query
rewriting; thus, the compliance verification test would pass on a query value different
than the one used for query rewriting); (b) privacy against D is only satisfied if the
protocol is allowed to leak any repeated occurrences of the same query value. Our
second protocol π2 extends π1 so to eliminate (a), and protocol π3 eliminates both
(a) and (b). In the following protocol descriptions, keys are named with two subscripts
indicating by which parties they are shared. For example, a private key shared by C
and S would be named kc,s. There may optionally be a third subscript com or que,
to indicate whether the key is used for policy compliance checking or query rewriting.
Thus, kc,d,com means a key shared by C and D and used for compliance checking. We
assume a standard secure 2-party key agreement protocol is executed in an initialization
phase to produce these keys.

Protocol π1. Our most basic protocol π1 allows efficient enforcement of policy com-
pliance for keyword search queries with whitelist policies (blacklist policies can be
supported with minor modifications).

A pictorial description of the protocol can be found in Figure 3. In the first step,
C sends to D two double encryptions of its query value v, once using key kc,d,que as
the inner layer, and a second time using key kc,d,com. Then, D and S interact to anal-
ogously compute ciphertexts for the policy values, as follows: first, D encrypts each
of the policy values w1, . . . , wc using key kc,d,com and sends the resulting ciphertexts
to S ; then, S further encrypts each of these ciphertexts using key kc,s, and returns the
resulting ciphertexts, reordered using a random permutation π, to D. At this point, D
computes the whitelist policy output by simply checking whether one or zero of the
policy value ciphertexts is equal to the ciphertext received by C. After the policy com-
pliance calculation, if the query is compliant, D simply forwards the received encryp-
tion kc,d,que to S , who can remove the outer layer of encryption and fulfill the query.
Otherwise, D performs query rewriting, sending S a random value indistinguishable
from a double-encrypted query.

As described in the introduction, the two main technical ideas embedded in this
protocol are: (1) using “equality-preserving encryption” to allow D to calculate the
policy output without revealing the policy values to S or C and without learning why
the policy was or was not satisfied (i.e., which policy value(s) wi may have textually
matched value(s) in the query); (2) using “query rewriting” to allow D to rewrite the
query q obtained by C into a query q′ which guarantees that the same database records
match q and q′ if q is compliant, or no records match q′ otherwise, without S or C
obtaining any additional information on which is the case.

Protocol π2: soundness against malicious clients. One problem with protocol π1 is
that a malicious C can violate the soundness property by sending two different queries
for compliance verification and query rewriting. Protocol π2 prevents this attack with
minimal modifications from π1. As a preliminary observation, we see that since C only

C S D

Compliance Check (v, w1,…,wc)

 F (Kc,s, F(Kc,d,que, v)) | r

F (Kc,s, F (Kc,d,com, v)),
F (Kc,s, F (Kc,d,que, v))

{ F (Kc,d,com, wi), i=1,..,c }

{ π(F (Kc,s, F (Kc,d,com, wi))), i=1,…,c }

Fig. 3. The basic keyword match policy compliance protocol π1

sends one query message, the only opportunity for C to provide malicious input is
before the compliance verification subprotocol. This naturally leads us to examine ways
in which we could modify protocol π1 to require only one input from C. Note that we
cannot use the same encryption for both compliance checking and query rewriting,
since that would allow S to identify encrypted query values that match policy items it
has seen during the setup phase.

We can resolve this by storage of a triple encryption F (kc,d, F (kc,s, F (kc,d, v)))
of each database value, as in Added DR Property 2, instead of a single encryption
F (kc,d, v), as in π1. The structure of the protocol is similar as for π1. At query time, C
encrypts the query value with both of its keys and sends the resulting doubly-encrypted
value F (kc,s, F (kc,d, v)) to D. Then D encrypts each of the policy values wi using
key kc,d and sends them to S , which then re-encrypts each of these using key kc,s,
randomly permutes the order of keywords, and returns the re-encrypted values to D.

As before, D checks the encrypted query for equality with the double-encrypted
policy values. If the query is non-compliant,D sends to S a random query indistinguish-
able from a triple-encrypted real query; otherwise, D re-encrypts F (kc,s, F (kc,d, v))
using kc,d, and sends the triple-encrypted value F (kc,d, F (kc,s, F (kc,d, v))) to S for
its answer generation in the DR protocol. Note that the outermost layer of encryption
prevents S from identifying whether the query matches policy items it had previously
encrypted from D—thus eliminating the need for separate com and que encryptions.

The resulting DPC protocol π2 inherits the same properties as π1, plus compliance
soundness under a different assumption on the method used to encrypt the database
values in the DR protocol (namely, Added Property 2). The triply-encrypted database
of Added DR Property 2 can be generated during the setup phase as follows. First, D
encrypts all items in the database with kc,d and sends them to S , which re-encrypts them
using kc,s and returns them to D. Then D adds a third layer of encryption, again using

kc,d, and sends the triply-encrypted database to S . This interaction between D and S
may be expensive, as it involves every item in the database being encrypted and sent
over the network three times; this may render this method undesirable to practitioners,
especially when dealing with large databases. We address this issue as well in π3.

Protocol π3: privacy across multiple queries. Protocols π1, π2 come with some leak-
age to D across multiple query executions: D learns, by checking for repetitions in the
first message sent by C to D, whether the query value in the current execution is equal
to a previously executed query. Although not a major form of leakage, it remains of
interest to see if we can prevent it at some affordable efficiency cost.

We now describe a protocol π3 that keeps all properties in π1, the compliance sound-
ness property achieved in π2 and satisfies privacy against D without the mentioned
leakage. (It also avoids the database setup inefficiency mentioned at the end of the
description of π2.) Protocol π3 uses an additional cryptographic tool: 2-party Secure
Function Evaluation (SFE) protocols [19]. Recall that in such protocols, two parties P1

and P2, with private inputs x1 and x2, respectively, can jointly compute a functionality
f(x1, x2) = (f1, f2), such that P1 receives f1(x1, x2), and P2 receives f2(x1, x2), and
it is required that nothing is learned by either party other than the output.

Instead of using a triple encryption as in π2, protocol π3 uses a different shared key
k′c,d for query rewriting. After the policy check, which remains unchanged, D and S

perform a two-party SFE protocol, returning to S a newly-encrypted form of the query.
First, C sends F (kc,s, F (kc,d, v)) toD, at which point the same policy compliance

check as in π2 takes place. After the compliance check, D and S engage in a two-
party SFE protocol, where D inputs F (kc,s, F (kc,d, v)), kc,d, k

′
c,d, a random query

r, and the (one-bit) result of the compliance check. S inputs kc,s. Together, the two
parties securely compute the following output, which is received only by S : if the query
was non-compliant, random value r is output; if the query was compliant, the doubly-
encrypted value F (kc,s, F (kc,d, v)) is decrypted twice to produce v, which is then
encrypted using key k′c,d, and the result, F (k′c,d, v) is released to S . S then proceeds
to compute the answer based on the DR protocol.

The resulting DPC protocol π3, illustrated in Figure 4, inherits the same properties
as π1 and π2, plus multi-query privacy against D. However, π3 is not strictly better
than π1, π2 since two-party SFE protocols come with added running time, even when
considering recent implementation advances (see, e.g., [15] and follow-up work). Ac-
cordingly, we only used two-party SFE executions on very short `-bit inputs (as opposed
to a generic SFE solution which would require inputs as large as the policy itself).

4 Performance Results

In this section we report initial performance results related to implementations of our
basic DPC protocols. We focus on results for π1 as π2 and π3 exhibit similar behaviour.
Specifically, π2 is only slower than π1 by a small constant multiplicative factor and π3
is only slower than π2 by a small constant additive factor.

Setup. The Data Owner and Server processes were running on a Dell PowerEdge R710
server with two Intel Xeon 2.66Ghz processors and 48GB of memory, running 64-bit

C S D

b = Compliance Checking (v, w)

q = E (Kc,s, E(Kc,d,com, v))

E(Kc,d,com, wi)

π(E (Kc,s, E(Kc,d,com, wi)))

SFE:
If b=1 then q’ = E(Kc,d,que, v),

else q’ = E(Kc,d,que, r)

q, b, Kc,d,com, Kc,d,que, r Kc,s

q’

Fig. 4. Protocol π3: Keyword search policy compliance with (multi-query) security against D

Ubuntu 12.04.1. The R710 server was connected to a Dell PowerVault MD1200 disk
array containing 12 2TB 7.2K RPM SAS drives arranged in a RAID6 configuration. The
Client was running on a Dell PowerEdge R810 server with two Intel Xeon 2.40GHz
processors and 64 GB of memory, running 64-bit Red Hat Enterprise Linux Server
release 6.3 and connected to the R710 server via switched Gigabit Ethernet.
The database was populated by generating random values about fictitious people using
demographic information from the US Census Bureau. A single table with 23 columns
was used (e.g., last name lname, state state, and zip code zip), including several columns
containing large text fields and one column containing binary data (fingerprint). We
considered the following policies:

Policy Compliant queries must include:
F All queries are rejected as non compliant
T All queries are accepted as compliant

B1 A conjunction of at least 3 keyword queries on state, lname, and zip
B2 A conjunction of at least 3 keyword queries on state, lname, and any

one of the remaining columns, excluding fingerprint
W1 A keyword query on lname with query value in a 1-entry whitelist
W2 A keyword query on lname with query value in a 100-entry whitelist
W3 A keyword query on lname with query value in a 1000-entry whitelist
W4 A keyword query on lname with query value in a 10000-entry whitelist
W5 A keyword query on lname with query value in a 20000-entry whitelist

Compliance policy B2 was expressed as a disjunction of 23 sub-policies of B1 type,
each of them requiring keyword query conjunctions on state, lname, and an additional
(and different) database column. We considered the following queries:

Query Template
Q1 SELECT * FROM main WHERE lname=value
Q2 SELECT * FROM main WHERE state=value AND lname=value AND

zip=value

Results. Each query template was executed several times using different values. We
note that policies F , T , B1 and B2 only refer to the query structure or database at-
tributes and do not depend on query values, contrarily to queries W1, . . . ,W5, which
depend on values in the query and in the (variable-length) whitelist.

Fig. 5. Query compliance checking overhead
for policies F , T , B1, and B2.

Fig. 6. Query compliance checking overhead
for policies W1, W2, W3, W4, and W5.

Figure 5 shows results when checking compliance for policies F , T , B1, and B2
for Q1 and Q2 queries. Such checking was based on the query structure only and, thus,
there is no impact from cryptographic operations on the measured running time. Two
main observations can be derived from this figure: (1) running time is essentially linear
with policy size (e.g., the ratio of the time taken for policy B2 to the time taken for
policy B1 is about the same ratio of the size of B2 to the size of B1); (2) running time
is almost the same for the two policy types Q1 and Q2, with variance of less than 3%.

Figure 6 shows computation results when running protocol π1 for query classes
Q1 and Q2 and policies W1, . . . ,W5. These policies depend on query values and,
hence, trigger execution of π1, with its cryptographic operations. The main observation
derived from this figure is that the time required by π1 grows linearly with the size of the
whitelist (the only difference among these policies). As the size of the whitelist grows,
so does the time it takes to doubly encrypt its values, send/receive them between D and
S , and checking by using sequential scan whether an attribute value referenced in C’s
query belongs to the doubly encrypted and permuted whitelist values. (Here, a speedup
due to the use of binary search does not seem to impact the running time substantially,
due to the double encryption and network communication required.)

When comparing the two figures, we observe that the impact of running π1 when
checking compliance is essentially minimal for policies with short-size whitelists (i.e.,
a factor of about 10, calculated by comparing the running time for F, T,B1 with the
running time of policies W1,W2,W3).

Acknowledgement. Supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via Department of Interior National Business Center (DoI/NBC) con-
tract number D13PC00003. The second, third, fifth and sixth authors also acknowledge
DARPA contract FA8750-13-2-0058 for some of the time spent on revising this paper.
The U.S. Government is authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation hereon. Disclaimer: The views
and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of IARPA, DARPA, DoI/NBC, or the U.S. Government.

References
1. Beaver, D.: Commodity-based cryptography (extended abstract). In: STOC. (1997) 446–455
2. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with key-

word search. In: EUROCRYPT. (2004) 506–522
3. Brickell, E., Di Crescenzo, G., Frankel, Y.: Sharing Block Ciphers. In: ACISP. (2000): 457-

470
4. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-based

encryption and authorised private searches on public key encrypted data. In: Public Key
Cryptography. (2009) 196–214

5. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.: Modeling and assess-
ing inference exposure in encrypted databases. ACM TISSEC 8 (2005) 119–152.

6. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM
45(6) (1998) 965–981

7. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Universal Service-Providers for Database Private
Information Retrieval. In PODC. (1998): 91-100

8. Evdokimov, S., Günther, O.: Encryption techniques for secure database outsourcing. In: ES-
ORICS. (2007) 327–342

9. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on Oblivious RAMs. In J.
ACM 43(3): (1996)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM CCS Conference. (2006) 89–98

11. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the
database-service-provider model. In: SIGMOD Conference. (2002) 216–227

12. Hamlen, K. W., Kagal, L., Kantarcioglu, M.: Policy Enforcement Framework for Cloud Data
Management. In: IEEE Data Eng. Bull. 35(4) (2012), 39–45.

13. Jarecki, S., Lincoln, P., Shmatikov, V.: Negotiated privacy: (extended abstract). In: ISSS.
(2002) 96–111

14. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted data in
cloud computing. In: ICDCS. (2011) 383–392

15. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system.
In: USENIX Security Symposium. (2004) 287–302

16. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: VLDB.
(2003) 898–909

17. Song D., Wagner D., Perrig A.: Practical Techniques for Searches on Encrypted Data. In:
IEEE Symposium on Security and Privacy. (2000) 44-55

18. Wright, R.N., Yang, Z., Zhong, S.: Privacy-preserving queries on encrypted data. In: ES-
ORICS. (2006) 479-495.

19. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS. (1986)
162–167

