
Lewis University

Hiding in the Cloud:

The Perils and Promise of

Searchable Encryption

Rutgers University

David Cash

Jason Perry

Cornell Tech

Tom Ristenpart
Cornell University

Paul Grubbs

In collaboration with:

Cloud storage is everywhere and not going away

Advantages:

automatic synchronization

access from any device, any platform,

anywhere

2

BUT….

What if the cloud provider gets hacked?

What if the cloud provider is the bad guy?

My private information and searches can be exposed.

3

BUT….

What if the cloud provider gets hacked?

What if the cloud provider is the bad guy?

My private information and searches can be exposed.

4

I Know!

I’ll encrypt my data with a client-side key before I upload it.

“End-to-end encryption”

But this presents major usability problems for files stored remotely,

and seems to be a non-starter for interactive services such as

email.

5

I Know!

I’ll encrypt my data with a client-side key before I upload it.

“End-to-end encryption”

But this presents major usability problems for files stored remotely,

and seems to be a non-starter for interactive services such as

email.

6

We want to store

encrypted data in the

cloud and search it while

it’s still in the cloud and

still encrypted.

Companies actively promoting products to do this,

providing Searchable Encryption

7

client cloud provider

Outsourced storage and searching

give me all records

containing “Francis”

, ,

• “Records” could be emails, documents, …

• Searching is performed efficiently in the cloud via standard techniques

8

client cloud provider

???

End-to-end encryption breaks searching

give me all records

containing “Francis”

• Searching incompatible with privacy goals of traditional encryption

9

client cloud provider

Idea 1

give me all records

containing “3xfa9b”

• Enable simple keyword searches by appending keyed hashes of

keywords to the documents they match.

10

, ,

Keyword

hashes

Keyword

hashes

Legacy-compliant

A Widely-Used Construction

• This “appended keyword hash” construction can be deployed

on an existing service by the client, with no support from the

server.

• A client-side program can “overlay” encryption on the

existing system

• The service’s own searching capability is exploited to match

the hash values

Used by actual products:

• Mimesis – overlays UI of

android apps

• Shadowcrypt – browser

extension to encrypt 14

popular web services

11

What the server saw

Server can immediately see the pattern of which keyword hashes

appear in which documents, including words in common.

This is an example of leakage.

12

“this keyword is the

most common”

“document #37 contains

every keyword, and appears

together with #9 often”

How bad is it?

Crypto security definitions usually formalize e.g.:

“nothing is leaked about the input, except size”

This is definitely worse than that.

But, what can the cloud provider learn about your

data from this leakage?

13

Highly unclear if/when this leakage is dangerous

Investigating Leakage

We carried out a series of simulation experiments, using email

datasets, to get a sense of the exploitability of leakage by a

dishonest server.

The server observes the encrypted records and queries and

gathers statistics, then attempts to reconstruct the client’s

documents or queries.

We will outline 3 attack experiments and the results.

14

Enron Emails

• 30109 documents from employee sent_mail folders (to focus on

intra-company email)

• When considering 5000 indexed keywords, average of 93

keywords/document

Apache Emails

• 50582 documents from Lucene project’s java-user mailing list

• With 5000 keywords, average of 291 keywords/document

Processed with standard IR keyword extraction techniques

(Porter stemming, stopword removal)

15

Datasets for Attack Experiments

Client

Docs

Keyword

Hashes

I see keyword hashes

on some docs I

happen to know

and others I don’t…

What does that tell me?

16

Attack 1: Document Recovery from Partial

Knowledge

17

Passive Document Recovery Attack Setting

• Appended-keyword searchable encryption

• No queries issued at all

• Content of some documents becomes known to the server

• Attacker Goal: Recover other document contents

A Simple Observation

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

Doc 2:

zAFDr7ZS99TztuSBIf[…]

H(K,fast), H(K,red),

H(K,fox), …

• A server who knows the contents of Doc 1 immediately knows

which keywords the hashes are hashes of.

• If hash values are stored in word order of first appearance, server

learns the exact correspondence of keywords to hashes.

• Server sees other documents with the same hash, knows the

document contains the same word.

• Harder but still possible if hashes are in random order.

Known: Unknown:

18

Document Recovery from Partial Knowledge

From knowing even a small number of documents, the server learns

enough keyword hashes to “piece together” the contents of other

documents.

For each dataset, server knowing either 2 or 20 randomly chosen

emails

Dataset,

Known Docs

Average Keywords

Recovered / Doc

Enron, 2 16.3%

Enron, 20 56.0%

Apache, 2 50.7%

Apache, 20 68.4%

19

Example of in-order document reconstruction

• From Enron with 20 random known documents

• Note effect of stemming, stopword removal, and revealing each

word just once

20

The effect of one public document

Documents with wide distribution are more likely to become known.

Case study: A single email from the Enron corpus, sent to 500

employees

• 832 Unique Keywords

• Topic: an upcoming survey of the division by an outside

consulting group.

The vocabulary of this single document would let a server recover

on average 35% of the words in every document, not counting

stopwords.

21

Conclusion 1

Appended-hash constructions are not able to keep the contents of

documents secret from a server that observes the hashes.

22

A Safer Construction

Research in searchable encryption has produced more

sophisticated index structures, that keep the keyword-document

mapping hidden until the time that a query is issued.

Each query reveals a little more of the keyword appearance

pattern.

23

client cloud provider
Row decryption key

Client uploads an encrypted inverted index

4, 9, 37

24

Searchable Symmetric Encryption
[SWP’00, CGKO’06, …]

But there is still leakage!

Access pattern is revealed progressively.

Attack experiment where the server already knows the contents of

the documents, but attempts to learn what the client queried.

Example application: private searches of publicly known data.

A previous attack was able to reveal ~80% of query terms with

small datasets, using a computationally intensive annealing

algorithm to perform matching.

25

[IKK‘12]

Client

Docs

SE Index

I know the data he is

searching…can I deduce

his query terms?

26

Attack 2: Query Recovery from Document

Knowledge

Another simple idea

Observation: When there’s only one query that returns a

certain number of documents, then the server can

immediately identify that query.

Just look at the number of document IDs returned by a query.

We call this the “count attack”

27

Query Recovery via Result Counts

After finding unique-match queries, we then

“disambiguate” remaining queries by checking

intersections

rec1 rec2 rec3 rec4

Q1 1

Q2 1

Q3 1 1 1

Q4 1 1

Q5 1 1

Q6 1

Leakage:

Q3 matched 3

records, so it

must be “Lewis”

Q2 overlapped w/

one record containing

“Lewis” so it must

be “Francis”

28

Query Recovery Experiment

Runs in seconds, not hours; scales up to larger dictionaries

• Enron email dataset

• 10% queried at random

Setup:

29

Conclusion 2

Even the stronger searchable encryption schemes are not safe for

hiding queries on known datasets.

This attack gives no definitive answer for other cases.

30

One more attack trick

Here is an even nastier thing the server can do.

31

Local Client

Emails

SE index

Attack 3: Chosen-Document Insertion

update protocol

32

I don’t know what

documents he is

indexing…
Now I know one!

Chosen-Document Attack ⇒ Learn chosen hashes

• Again we attack the appended-keyword-hash constructions

Doc 1:

The quick brown fox […]

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

• Server immediately learns keyword hashes of planted doc

• Hashes stored in document order ⇒ very easy attack

• Hashes not in order ⇒ more difficult (our results)

Doc 2:

The fast red fox […]

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,fox), H(K,red),

H(K,fast), …

33

Chosen Document Attack Experiment

Attack Sketch:

1. Malicious server constructs a series of emails, each with a small

number of chosen keywords

2. Server observes insertion of planted emails into its index, seeing

the appended hashes

3. Uses frequencies of a related corpus to deduce which hashes

correspond to which keywords

Experimental results:

Server who plants emails with up to 10 keywords can identify

keywords with <20% error rate

Goal: Maximize number of keywords learned from a minimum

number of chosen documents (planted emails)

34

Potentially more secure constructions

Newer work: Sophos - Forward Secure Searchable Encryption

[Bost 2016]

https://eprint.iacr.org/2016/728

Claim “optimal point of the security/performance tradeoff for SSE”

35

https://eprint.iacr.org/2016/728

Encrypting data securely and the capability to search it seem

to be opposing goals.

Current constructions for searchable encryption provide

possibilities for negotiating an efficient compromise.

However, claims of security products must be sifted to

determine what these compromises are.

We’ve only scratched the surface…

Conclusion

36

Thank you!

37

