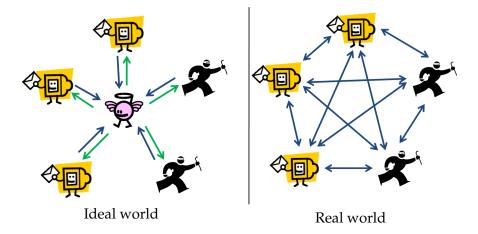
Systematizing Secure Computation for Research and Decision Support

Jason Perry, Debayan Gupta, Joan Feigenbaum and Rebecca N. Wright

Rutgers University, Yale University


SCN 2014, Amalfi

Slides available at http://paul.rutgers.edu/~jasperry/scn-slides-jp.pdf There are *n* parties who wish to jointly compute a functionality based on their individual inputs $(y_1, \ldots y_n) = f(x_1, \ldots x_n)$, while preserving

- **Privacy**: Not revealing anything about their own inputs
- **Correctness**: An adversary cannot prevent honest parties from obtaining the answer

Canonical example—"Millionaires' problem": find out which of us is the richest without revealing how much money I actually have

MPC Simulates a Trusted Third Party

State of MPC Research

- 2-party garbled circuits paradigm suggested by Yao [Y82, Y86], first general protocol for any *n* parties by Goldreich et al. [GMW87]
- Hundreds of research papers since, many giving new general protocols with varying sets of assumptions, more rigorous formulations of security, and efficiency improvements
- Since Fairplay [MNPS04], a growing number of implementations
- Several practical applications proposed:
 - Satellite collision avoidance
 - Auctions
 - Personal appointment scheduling

...but still only a handful of documented real-world deployment experiments

Why the low adoption rate?

- Field is genuinely complicated: MPC protocols are complex objects with many axes of variation
- Difficult to compare protocols or evaluate their suitability to any given problem
- Understanding and organizing a large number of results might be a thankless job...

A *Systematization of Secure Computation* can improve this situation by:

- Helping security consultants and implementers understand the relative merits of protocols, so they can recommend and deploy solutions.
- Helping new researchers come up to speed on the area more quickly
- Helping researchers explore the problem space and discover new openings for improved protocols

- Survey many research papers in the area and create an annotated bibliography
- Obvelop a system for classifying MPC protocols by their distinguishing features (security, efficiency etc.) and modeling their interdependencies
- Olassify published protocols using our system
- Implement a GUI for interacting with the systematization database

Currently over 190 papers and growing, annotated with description of result and cross-references

- Includes some key background papers on oblivious transfer, secret sharing, commitment
- Entries in source are tagged, allowing creation of sub-bibliographies for smaller problem areas

Available online at

http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf.

Goal: a means of classifying protocols that captures all significant distinctions (at least asymptotically) and makes it easy to compare & contrast protocols

• especially in terms of *tradeoffs*: strength of assumptions vs. security/efficiency, security vs. efficiency

We factored the features of MPC protocols into a set of 22 linear axes, ordered from weaker to stronger result.

- Each axis populated with a discrete set of known values; new results may define new intermediate values, though some are inherently binary
- Axes fall into four categories, highlighting the tradeoffs at a high level

Adversary Maliciousness

Axis Categories

Environmental Assumptions

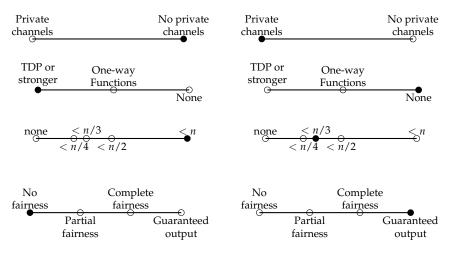
Private Channels Broadcast Channel Trusted Setup Synchronous Network

Cryptographic Assumptions

Computational Assumption Level Assumption Specificity

Security Features

Security type Adversary Maliciousness Adversary Mobility Threshold of Corrupted Parties Add'1 passively corrupted parties Add'1 corrupted with weaker security Fairness Composability Leakage Security Auditability


Efficiency Achieved

Online computation complexity Online round complexity Online per-gate comm complexity Preprocessing comm complexity Preprocessing dependency Preprocessing reuse

Sample Protocol Comparison Using Axes – 1

[GMW87]-mal

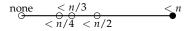
[BGW88]-mal

12 / 20

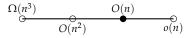
Sample Protocol Comparison Using Axes – 2

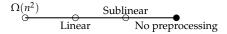
[GMW87]-mal

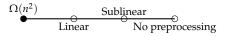
Threshold of corrupted parties


Online communication complexity per gate

$$\Omega(n^3) \qquad O(n) \\ \bullet \\ O(n^2) \qquad O(n) \\ O(n) \\$$


Preprocessing communication complexity per gate


Threshold of corrupted parties



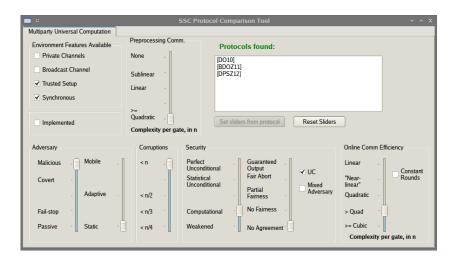
Online communication complexity per gate

Preprocessing communication complexity per gate

13 / 20

- Currently over 30 protocols scored on axes
- Freely available; currently distributed as part of GUI tool

Impossibility & lower-bound theorems of the MPC literature can be stated as a set of dependencies between axis values


Example:

Theorem [BGW88]

For unconditional security against *t* maliciously corrupted players, $n/3 \le t < n/2$, a broadcast channel is required.

= If the <u>Security type</u> axis value is to the right of "Computational" and the <u>Maliciousness</u> axis is at "Malicious" and the <u>Corrupted parties</u> axis is to the right of "n/3", then the <u>Broadcast</u> axis must be at "Broadcast channel" Developed a graphical tool, *SysSC-UI*, for exploring the MPC protocol database

- Reads axis values of protocols directly from database
- Has encoding of the dependencies in its internal logic
- User sets sliders and checkboxes to the desired parameters, and sees references to all papers with protocols *at least* as good.

17 / 20

Nice things:

- Immediately see the history of papers for a given sub-problem
- Reveals protocols most suited to given requirements, and potential gaps for research.

Open source; python code and database available at https://code.google.com/p/syssc-ui/

Web version also in progress: http://work.debayangupta.com/ssc/

- Moving toward a community-based model
 - To keep our database up-to-date, we have developed an online survey in which researchers can enter their protocols and their properties: http://goo.gl/T40Rzr
 - Feedback welcome
- Many potential ways to visualize/interact with the protocol database
- Applying this systematization approach to other messy bodies of theoretical knowledge

Questions?