
Lewis University

Security of Searchable

Encrypted Cloud Storage

Rutgers University

David Cash Jason Perry
Cornell Tech

Tom Ristenpart
Cornell University

Paul Grubbs

client cloud provider

Outsourced storage and searching

give me all records

containing “Wheaton”

, ,

• “records” could be emails, text documents, Salesforce records, …

• searching is performed efficiently in the cloud via standard techniques

2

client cloud provider

???

End-to-end encryption breaks searching

give me all records

containing “Wheaton”

• Searching incompatible with privacy goals of traditional encryption

3

Companies actively trying to navigate this tension,

providing Searchable Encryption

4

client

Searchable Symmetric Encryption

nCeUKlK7GO5ew6mwpIra

ODusbskYvBj9GX0F0bNv

puxtwXKuEdbHVuYAd4mE

ULgyJmzHV03ar8RDpUE1

6TfEqihoa8WzcEol8U8b

Q1BzLK368qufbMMHlGvN

sOVqt2xtfZhDUpDig8I0

jyWyuOedYOvYq6XPqZc2

5tDHNCLv2DFJdcD9o4FD

cloud provider

Want docs

containing word

w = “ForenSecure”

Search token: Tw

c1, c2, c3, …

Should not learn

docs or queries

[SWP’00, CGKO’06, …]

• Also includes Update Protocol for adding new documents/records

5

client cloud provider
H(K, dog) = 45e8a

All SE leaks some information to the server

Example SSE Construction

Client uploads an encrypted inverted index

4, 9, 37

6

“this keyword is the

most common”

“document #37 contains

every keyword, and appears

together with #9 often”

Highly unclear if/when this leakage is dangerous

Keywords/data not in the clear, but some info can be derived by server

What does SSE leakage look like?

7

How SE is analyzed in the literature

• Identify a formal “leakage function” L
• Allows server to learn info corresponding to L, but no more

SE uses a weakened type of definition:

Crypto security definitions usually formalize e.g.:

“nothing is leaked about the input, except size”

Example L outputs:

• Result lengths (number of records matching a query term)

• Repeated Queries

• Repeated record IDs across search results (access pattern)

• Update information

8

Main question:

What can the cloud provider learn about your

data from this leakage?

A messy question that depends on many variables.

• Type of data, size of dataset, how data is processed, what queries

look like, update frequency, adversary knowledge, attacker goal, etc.,

etc.

Currently almost no guidance in the literature.

9

[Islam-Kuzu-Kantarcioglu ‘12]

Under certain circumstances, a high percentage

of queries (80%) can be deduced by a curious

server

who knows the contents of all of the documents

that were encrypted.

One prior work: Identifying queries

(sketched later)

10

Broaden and systematize the approach of [IKK ‘12]:

1. Different adversary goals: Document (record) recovery in addition

to query recovery

2. Different levels of adversary knowledge: (full, partial, and

distributional)

3. Active adversaries: planted documents

Simple leakage-abuse attacks for query recovery and document

recovery, with experiments

• Attacks apply to all constructions with the same or greater leakage

profile

This work: Practical Exploitability of SE Leakage

11

Datasets for Attack Experiments

Enron Emails

• 30109 documents from employee sent_mail folders (to focus on

intra-company email)

• When considering 5000 indexed keywords, average of 93

keywords/document

Apache Emails

• 50582 documents from Lucene project’s java-user mailing list

• With 5000 keywords, average of 291 keywords/document

Processed with standard IR keyword extraction techniques

(Porter stemming, stopword removal)

12

Outline of Results

1. Simpler query recovery

2. Document text recovery from partial server

content knowledge

3. Document text recovery via active attack (planted

documents)

13

Query recovery using document knowledge

rec1 rec2 rec3 rec4

Q1 1

Q2 1

Q3 1 1 1

Q4 1 1

Q5 1 1

Q6 1

Unknown term-doc matrix:

[IKK ‘12]

• Minimal leakage: Only record IDs matching each query, nothing revealed

beforehand

• Server knows all document content

• k random queries issued

• Adversary Goal: Learn the queries

Attack setting:

keyword records

Q1 4,37,62,75

Q2 9,37,93,94,95

Q3 4, 9,37

Q4 8,37,89,90

Server Observes:

… …

…

e.g., public financial data

14

The IKK attack (sketch)

Q1 Q2 Q3 Q4

Q1 2

Q2 1

Q3 1 3 1

Q4 1 4

Q5 3 1

Q6 1

Term Co-occurrence matrix:

…

…

• Server constructs term-term co-occurrence matrix

• Attempts to solve optimization problem of matching to known term

co-occurrence matrix

• Over 80% of queries correctly identified for small index sizes (1500

keywords)

15

Observation: When there’s only one query that returns a

certain number of documents, then the server can

immediately identify that query.

The IKK attack works only if the server has highly accurate

knowledge of the document set

If that’s the case, then why not just look at the number of document

IDs returned by a query?

16

Query Recovery via Result Counts

• After finding unique-match queries, we then

“disambiguate” remaining queries by checking

intersections

rec1 rec2 rec3 rec4

Q1 1

Q2 1

Q3 1 1 1

Q4 1 1

Q5 1 1

Q6 1

Leakage:

Q3 matched 3

records, so it

must be “Lewis”

Q2 overlapped w/

one record containing

“Lewis” so it must

be “Wheaton”

17

Query Recovery Experiment

Runs in seconds, not hours

• Enron email dataset

• 10% queried at random

Setup:

18

Query Recovery with Partial Knowledge

• What if document set is only partially known to the

server?

• We generalized the counting attack to account for partial

information, and tested the count and IKK attacks when

only x% of the documents are known

19

Query Recovery with Partial Knowledge

Enron emails, 500 most frequent keywords indexed (stemmed,

non-stopwords), 150 queried at random, 5% of queries initially

given to server as hint
20

1. Simpler query recovery

2. Document recovery from partial knowledge

3. Document recovery via active attack

21

Document Recovery using Partial Knowledge

Client

Emails

SE index

This blob indexes some

docs I happen to know

and others I don’t…

What does that tell me?

22

Passive Document Recovery Attack Setting

• No queries issued at all

• Content of some documents becomes known to the server

• Attacker Goal: Recover other document contents

23

A Widely-Used Construction

• Attack works on the leakage from “appended keyword hash”

constructions:

Record 1:

The quick brown fox […]

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

Actual systems:

• Mimesis

• Shadowcrypt

[Lau et al’14]

[He et al’14]

Record 2:

The fast red fox […]

Hs9gh4vz0GmH32cXK5[…]

H(K,fast), H(K,red),

H(K,fox), …

Record 1:

Record 2:

Legacy-compliant

24

Simple Observation

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

Doc 2:

zAFDr7ZS99TztuSBIf[…]

H(K,fast), H(K,red),

H(K,fox), …

• If server knows Doc 1, then learns when any word in Doc 1

appears in other docs

• More revealing case: Hash values stored in word order of first

appearance.

• Harder but still possible if hash in random order. (see paper)

Known: Unknown:

25

Document Recovery from Partial Knowledge

For each dataset, server knowing either 2 or 20 random emails

Dataset,

Known Docs

Average Keywords

Recovered / Doc

Enron, 2 16.3%

Enron, 20 56.0%

Apache, 2 50.7%

Apache, 20 68.4%

26

Anecdotal Example

• From Enron with 20 random known documents

• Note effect of stemming, stopword removal, and revealing each

word once

27

The effect of one public document

Case study: A single email from the Enron corpus, sent to 500

employees

• 832 Unique Keywords

• Topic: an upcoming survey of the division by an outside

consulting group.

The vocabulary of this single document would let a server recover

on average 35% of the words in every document, not counting

stopwords.

28

Outline

1. Simpler query recovery

2. Document recovery from partial knowledge

3. Document recovery via active attack

29

Local Proxy

Emails

SE index

Chosen-Document-Addition Attacks

update protocol

Leakage from my

crafted email!

30

Chosen-Document Attack ⇒ Learn chosen hashes

• Again we attack the appended-keyword-hash constructions

Doc 1:

The quick brown fox […]

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

• Hashes stored in document order ⇒ very easy attack

• Hashes not in order ⇒ more difficult (we attack now)

Doc 1:

The quick brown fox […]

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,fox), H(K,quick),

H(K,brown), …

31

Chosen Document Attack Experiment

Attack Sketch:

1. Malicious server constructs a series of emails, each with a small

number of chosen keywords

2. Server observes insertion of planted emails into its index, seeing

the appended hashes

3. Uses frequencies of a related corpus to deduce which hashes

correspond to which keywords

Experimental results:

Server who plants emails with up to 10 keywords can identify

hashes with <20% error rate

Goal: Maximize number of keywords learned from a minimum

number of chosen documents (emails)

32

Systematic study of exploitability of multiple SE leakage types

• Servers have high capability to deduce query and document

contents by observing client interactions

• Product claims must be sifted for potential compromises

• Need framework + experiments for understanding what one

can do with leakage

• We’ve only scratched the surface…

• Info retrieval and natural language methods!

Conclusion

34

Thank you!

35

