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client cloud provider

Outsourced storage and searching

give me all records

containing “denver”

, ,

• “records” could be emails, text documents, Salesforce records, …

• searching is performed efficiently in the cloud via standard techniques



client cloud provider

???

End-to-end encryption breaks searching

give me all records

containing “denver”

• Searching incompatible with privacy goals of traditional encryption



Companies actively trying to navigate this tension,

providing Searchable Encryption



client

Searchable Symmetric Encryption

nCeUKlK7GO5ew6mwpIra

ODusbskYvBj9GX0F0bNv

puxtwXKuEdbHVuYAd4mE

ULgyJmzHV03ar8RDpUE1

6TfEqihoa8WzcEol8U8b

Q1BzLK368qufbMMHlGvN

sOVqt2xtfZhDUpDig8I0

jyWyuOedYOvYq6XPqZc2

5tDHNCLv2DFJdcD9o4FD

cloud provider

Want docs

containing word

w = “CCS”

Search token: Tw

c1, c2, c3, …

Should not learn

docs or queries

[SWP’00, CGKO’06, …]

• Also includes Update Protocol for adding new documents/records



client cloud provider
H(K, dog) = 45e8a

All SE leaks some information to the server

Example SSE Construction

Client uploads an encrypted inverted index

4, 9, 37



“this keyword is the

most common”

“document #37 contains 

every keyword, and appears 

together with #9 often”

• Highly unclear if/when leakage is dangerous

Keywords/data not in the clear, but some info can be derived by server

What does SSE leakage look like?



How SE is analyzed in the literature

• Identify a formal “leakage function” L
• Allows server to learn info corresponding to L, but no more

SE uses a weakened type of definition:

Crypto security definitions usually formalize e.g.:

“nothing is leaked about the input, except size”

Example L outputs:

• Result lengths (number of records matching a query term)

• Query repetition

• Access pattern:  Repeated record IDs across searches

• Update information



Main question:

How serious is “leakage” in practice?

A messy question that depends on many variables.

• Type of data, size of dataset, how data is processed, what queries 

look like, update frequency, adversary knowledge, attacker goal, etc., 

etc.

Currently almost no guidance in the literature.



[Islam-Kuzu-Kantarcioglu ‘12]

Under certain circumstances, queries can be 

learned at a high rate (80%) by a curious server

who knows the contents of all of the documents 

that were encrypted.

One prior work:  Learning queries

(sketched later)



Broaden and systematize the approach of [IKK ‘12]:

1. Different adversary goals: Document (record) recovery in addition 

to query recovery

2. Different levels of adversary knowledge: (full, partial, and 

distributional)

3. Active adversaries:  planted documents

Simple leakage-abuse attacks for query recovery and document 

recovery, with experiments

• Attacks apply to all constructions with the same or greater leakage 

profile

This work:  Practical Exploitability of SE Leakage



Datasets for Attack Experiments

Enron Emails

• 30109 Documents from employee sent_mail folders (to focus on 

intra-company email) 

• When considering 5000 indexed keywords, average of 93 

keywords/document

Apache Emails 

• 50582 documents from Lucene project’s java-user mailing list 

• With 5000 keywords, average of 291 keywords/document

Processed with standard IR keyword extraction techniques 

(Porter stemming, stopword removal)



Outline of Results

1. Simpler query recovery

2. Document recovery from partial knowledge

3. Document recovery via active attack



Query recovery using document knowledge

rec1 rec2 rec3 rec4

Q1 1

Q2 1

Q3 1 1 1

Q4 1 1

Q5 1 1

Q6 1

Unknown term-doc matrix:

[IKK ‘12]

• Minimal leakage: Only which records match each query (as SSE)

• Server knows all document content

• k random queries issued

• Adversary Goal:  Learn the queries

Attack setting:

keyword records

Q1 4,37,62,75

Q2 9,37,93,94,95

Q3 4, 9,37

Q4 8,37,89,90

Server Observes:

… …

…

e.g., public financial data



The IKK attack (sketch)

Q1 Q2 Q3 Q4

Q1 2

Q2 1

Q3 1 3 1

Q4 1 4

Q5 3 1

Q6 1

Term Co-occurrence matrix:

…

…

• Server constructs term co-occurrence matrix

• Attempts to solve optimization problem of matching to known term 

co-occurrence matrix

• Over 80% correct for small index sizes (1500 keywords)



Hypothesis

Observation: When a query returns a unique number of 

documents, then it can immediately be guessed

The IKK attack works only if the server has highly accurate 

knowledge of the document set

If so, then why not just check the number of documents returned 

by a query?



Query Recovery via Counts

• After finding unique-match queries, we then 

“disambiguate” remaining queries by checking 

intersections

rec1 rec2 rec3 rec4

Q1 1

Q2 1

Q3 1 1 1

Q4 1 1

Q5 1 1

Q6 1

Leakage:

Q3 matched 3

records, so it

must be “rutgers”

Q2 overlapped w/

one record containing

“rutgers” so it must

be “denver”



Query Recovery Experiment

Runs in seconds, not hours

• Enron email dataset

• 10% queried at random

Setup:



Query Recovery with Partial Knowledge

• What if document set is only partially known?

• We generalized the counting attack to account for partial 

information, and tested the count and IKK attacks when 

only x% of the documents are known



Query Recovery with Partial Knowledge

Enron emails, 500 most frequent keywords indexed (stemmed, 

non-stopwords), 150 queried at random, 5% of queries initially 

given to server as hint



1. Simpler query recovery

2. Document recovery from partial knowledge

3. Document recovery via active attack



Document Recovery using Partial Knowledge

Client

Emails

SE index

This blob indexes some

docs I happen to know

and others I don’t…

What does that tell me?



Passive Document Recovery Attack Setting

• No queries issued at all

• Some documents become “known” to the server

• Attacker Goal:  Recover other document contents



New Leakage Profile

• Attack on weaker “appended keyword hash” constructions:

Record 1:

The quick brown fox […]

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

Actual systems:

• Mimesis

• Shadowcrypt

[Lau et al’14]

[He et al’14]

Record 2:

The fast red fox […]

Hs9gh4vz0GmH32cXK5[…]

H(K,fast), H(K,red),

H(K,fox), …

Record 1:

Record 2:

Legacy-compliant



Simple Observation

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

Doc 2:

zAFDr7ZS99TztuSBIf[…]

H(K,fast), H(K,red),

H(K,fox), …

• If server knows Doc 1, then learns when any word in Doc 1 

appears in other docs

• Implementation detail:  We assume hash values stored in order.  

• Harder but still possible if hash in random order.  (see paper)

Known: Unknown:



Document Recovery with Partial Knowledge

For each dataset, server knowing either 2 or 20 random emails

Dataset,

# Known Docs

Average Keywords

Recovered / Doc

Enron, 2 16.3%

Enron, 20 56.0%

Apache, 2 50.7%

Apache, 20 68.4%



Anecdotal Example

• From Enron with 20 random known documents

• Note effect of stemming, stopword removal, and revealing each 

word once



The effect of one public document

Case study: A single email from the Enron corpus, sent to 500 

employees

• 832 Unique Keywords

• Topic: an upcoming survey of the division by an outside 

consulting group.

The vocabulary of this single document gives us on average 35% 

of the words in every document, not counting stopwords.



Outline

1. Simpler query recovery

2. Document recovery from partial knowledge

3. Document recovery via active attack



Local Proxy

Emails

SE index

Chosen-Document-Addition Attacks

update protocol

Leakage from my 

crafted email!



Chosen-Document Attack ⇒ Learn chosen hashes

• Again we attack the appended-keyword-hash constructions 

Doc 1:

The quick brown fox […]

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,quick), H(K,brown),

H(K,fox), …

• Hashes in order ⇒ very easy attack

• Hashes not in order ⇒ more difficult (we attack now)

Doc 1:

The quick brown fox […]

Doc 1:

zAFDr7ZS99TztuSBIf[…]

H(K,fox), H(K,quick), 

H(K,brown), …



Chosen Document Attack Experiment

Procedure for generating chosen emails:

1. Divided dataset into half training / half test

2. Based on training set, rank keywords by frequency

3. Generate chosen emails with k keywords each

4. Learn unordered hash values of those k keywords

5. Guess hash → keyword mapping via frequency counts

Two different training setups:  

1. Training and test sets from same corpus (both Enron or Apache)

2. Training and test from different corpora (i.e. train on Apache, 

test on Enron)

Goal:  Maximize number of keywords learned from a minimum 

number of chosen documents (emails)



Chosen Document Attack Experiment Results



Systematic study of exploitability of multiple SE leakage types

• Temptation to deploy ad-hoc solutions must be avoided

• Need framework + experiments for understanding what one 

can do with leakage

• We’ve only scratched the surface…

• Info retrieval and natural language methods!

Conclusion



Thanks!


